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Family of problems

The horizontal position 
of the source was varied 
from 0 to 0.6.

Charge distribution Electric potential

Width: 20

Used 4-layer fully-connected tanh neural networks 
to solve the boundary value problem (BVP)

where Ω is a square domain. 

This models the electric potential of a localized 
charge distribution on a square with grounded edges.

• Inputs: coordinates of a point (x,y).

• Output: estimated potential u(x,y).

• Loss: MSE of BVP equations.

• Left: Activation vectors of each neuron in a 
network trained at x'=0.3, shown as functions 
over the input domain. 

• Note that it is difficult to interpret the 
activation vectors directly.

• The components in the first layer 
accentuate the input regions that are 
important to both networks simultaneously. 

• The fourth component, for instance, 
highlights the top-left and bottom-right 
corners. 

• The functions in the last layer form a basis 
that represents both outputs efficiently.

• In all layers, higher-order components 
become more multimodal, like Fourier modes.

• Right: The same network after 
layer-wise SVCCA with a second 
network trained at x'=0.6.

• Components are sorted from top 
to bottom by similarity scores.

• In machine vision, CNN layers can be visualized 
as the features they learn to identify.

• Neural networks can learn the solutions to 
differential equations. 

• Question: Do the layers in these networks 
encode useful information about the solution?

• Answer: Yes! For instance, the first layer 
identifies important regions of the input domain.

• Bonus: The same representations are learned 
reliably, even when the equations are modified.

• Left: The nine leading components in 
the first layer of a network of width 192 
trained at x'=0.6 after layer-wise SVCCA 
with itself. 

• Labels show similarity values and their 
order when sorted by similarity. 

• They act as coordinates over the input 
domain. The contour lines are densest 
where each coordinate is most sensitive.

• First row: These are simply rotations of 
the two original coordinates, x and y.  

• Second and third rows: These four, 
together, show position relative to the 
four corners of the domain.

• Fourth and fifth rows: These capture 
distance to the four walls of the domain. 

• For all sufficiently wide networks, the 
leading components of the first layer are 
mixtures of these features.

• This result is reproducible across 
different random initializations.

• It is also general, in that it does not 
depend on the x' of the two networks used 
for layer-wise SVCCA.

• To validate our measure of specificity, we also 
measured specificity using an existing approach 
based on transfer learning tests (Yosinski et al. 2014, 
Adv Neural Inf Process Syst. 3320–3328).

• We found good agreement between the measures, 
and our method was orders of magnitude faster.

• Above: Matrices of ρ, the sum of the 
SVCCA similarities, computed layer-
wise between networks trained from 
different random seeds (between black 
lines) and at different x' values.

• Below: From the matrices, we 
extract the self-similarity ρself, the 
similarity ρΔx'=0 across random seeds 
at fixed x', and the similarity as a 
function of x', ρΔx'.

• The intrinsic dimensionality converges at high widths, 
as layers converge to finite-dimensional representations.

• Wide layers also have very high reproducibility across 
different random initializations.

• The fourth layer has high specificity, as its functional 
behaviour changes significantly when x' varies. 

• The first layer has low specificity, because it learns a 
general representation that works well for all x'. 

• The second layer is also quite general, but the third layer 
transitions from specific in narrow networks to general in 
wide networks.


