

martinmagill.netlify.com

Overview

• In machine vision, CNN layers can be visualized as the features they learn to identify.

• Neural networks can learn the solutions to differential equations.

• **Question:** Do the layers in these networks encode useful information about the solution?

• **Answer:** Yes! For instance, the first layer identifies important regions of the input domain.

• **Bonus:** The same representations are learned reliably, even when the equations are modified.

Family of problems

Used 4-layer fully-connected tanh neural networks to solve the **boundary value problem (BVP)**

 $\nabla^2 u(x,y) = s(x,y)$ for $(x,y) \in \Omega$, u(x,y) = 0 for $(x,y) \in \partial \Omega$, $\exp\left(-\frac{(x-x')^2 + (y-y')^2}{2r^2}\right)$ $s(x,y) = -\underline{\qquad}$

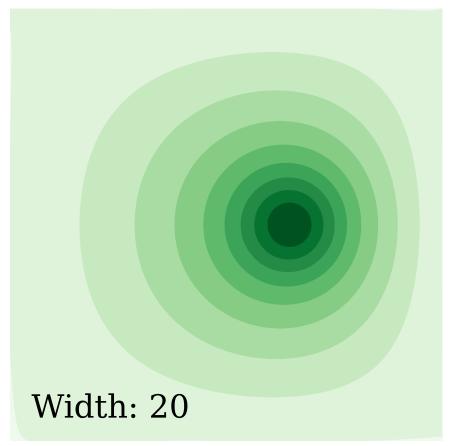
where Ω is a square domain.

This models the **electric potential** of a localized charge distribution on a square with grounded edges.

Charge distribution

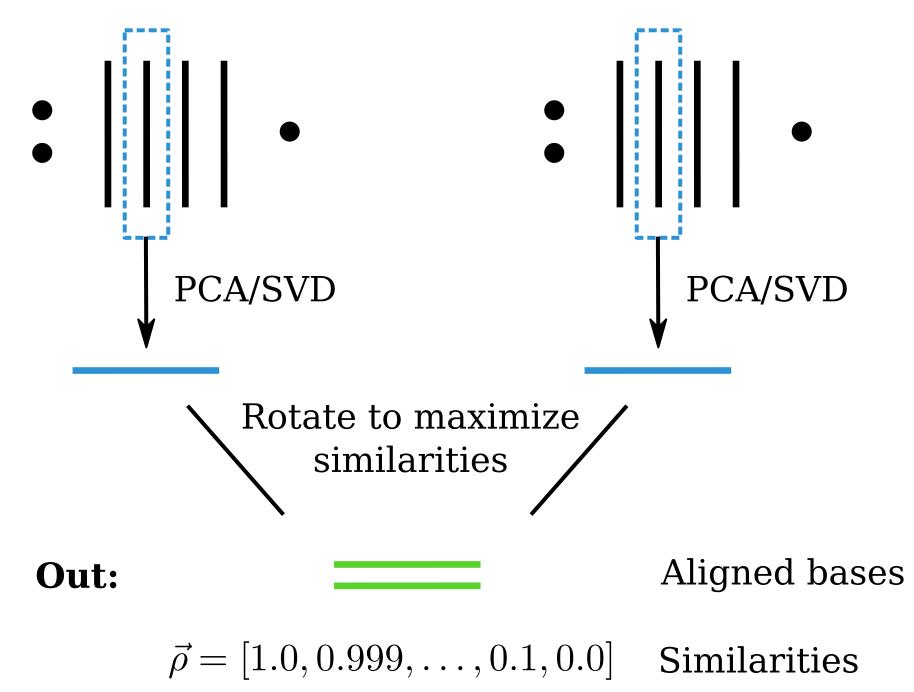
The horizontal position of the source was varied from 0 to 0.6.

Electric potential



Layer-wise SVCCA

In: activation vectors of each layer.

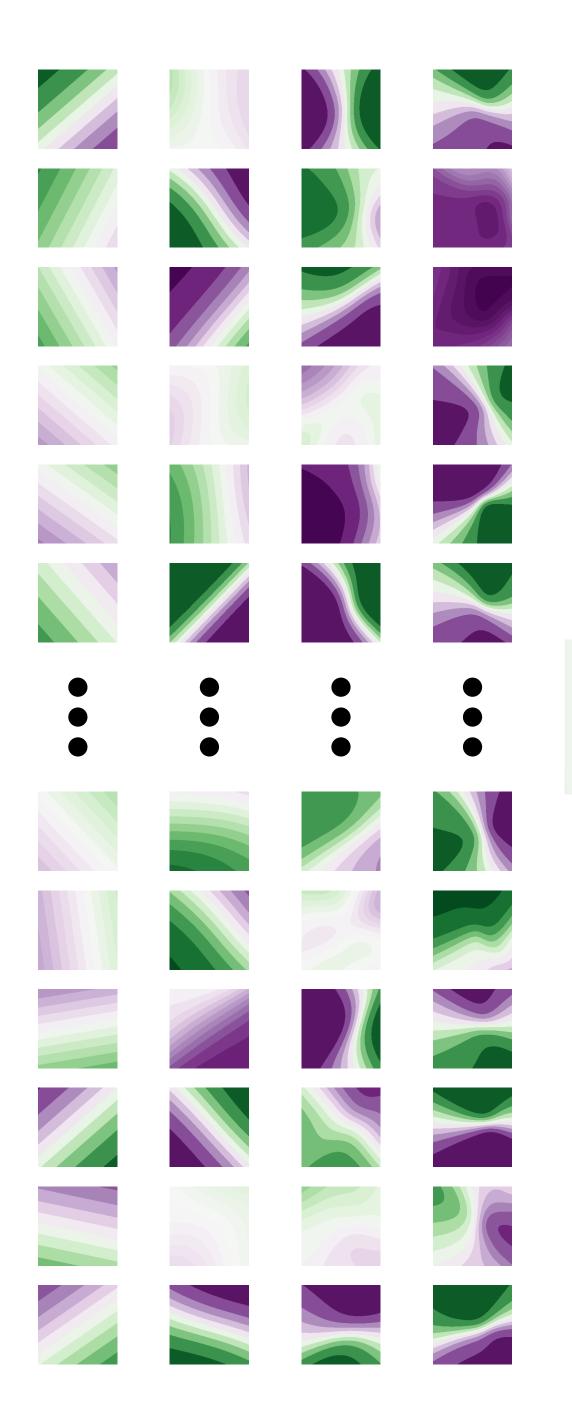


of

• **Above:** Matrices of ρ , the sum of the SVCCA similarities, computed layerwise between networks trained from different random seeds (between black

Neural Networks Trained to Solve Differential Equations Learn General Representations

Martin Magill, Faisal Z. Qureshi, & Hendrick W. de Haan Faculty of Science, University of Ontario Institute of Technology, Oshawa

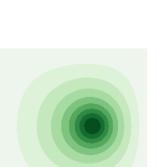


Interpreting the networks

- **Inputs:** coordinates of a point (*x*,*y*).
- **Output:** estimated potential u(x,y).
- **Loss:** MSE of BVP equations.

• Left: Activation vectors of each neuron in a network trained at x'=0.3, shown as functions over the input domain.

• Note that it is difficult to interpret the activation vectors directly.



• **Right:** The same network after layer-wise SVCCA with a second network trained at x'=0.6.

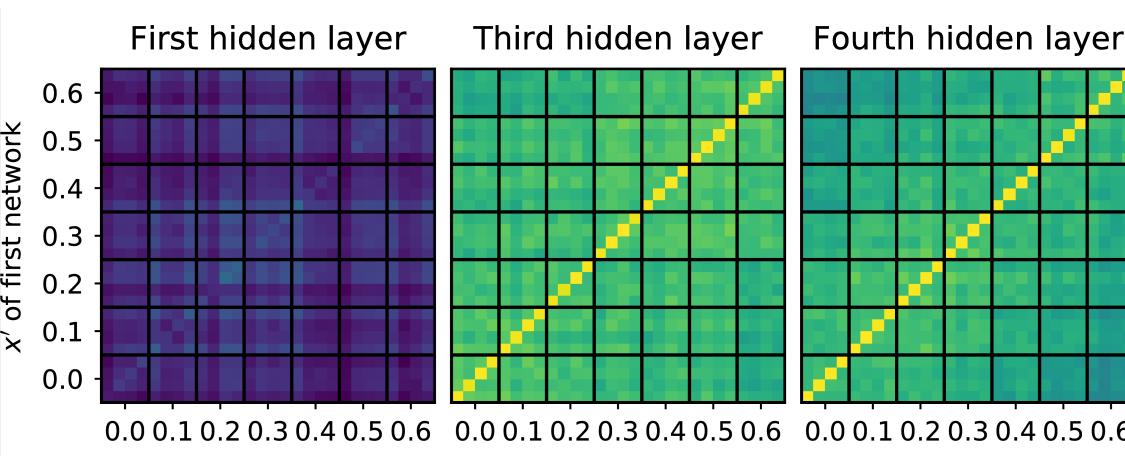
• Components are sorted from top to bottom by similarity scores.

• The components in the **first layer** accentuate the input regions that are important to both networks simultaneously.

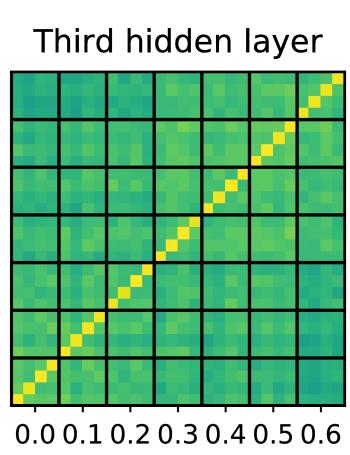
• The fourth component, for instance, highlights the top-left and bottom-right corners.

• The functions in the **last layer** form a basis that represents both outputs efficiently.

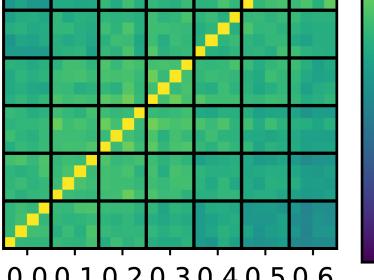
• In all layers, higher-order components become more multimodal, like Fourier modes.



x' of second network



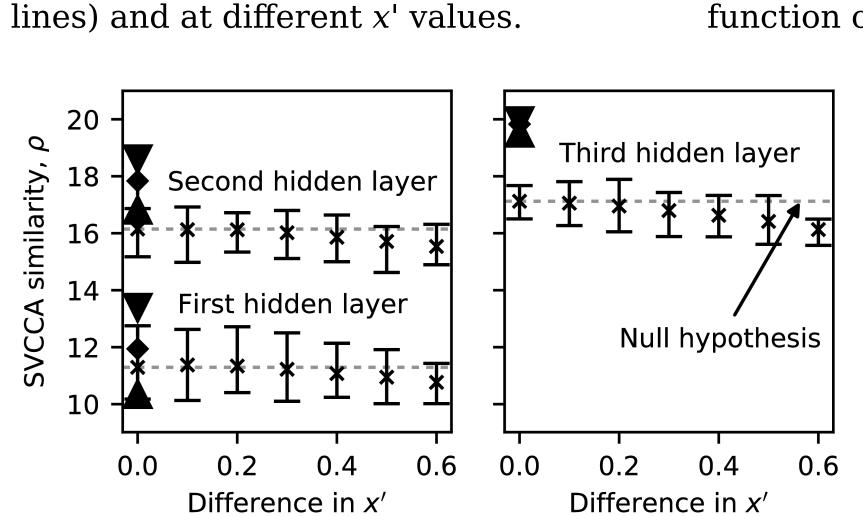
x' of second network

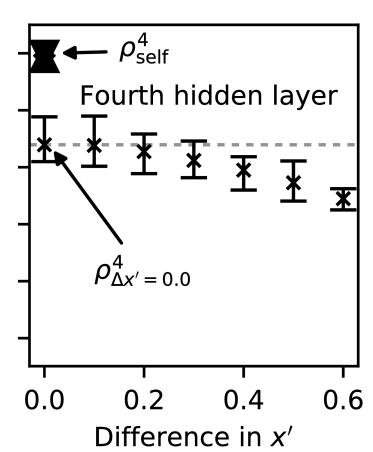


Fourth hidden layer

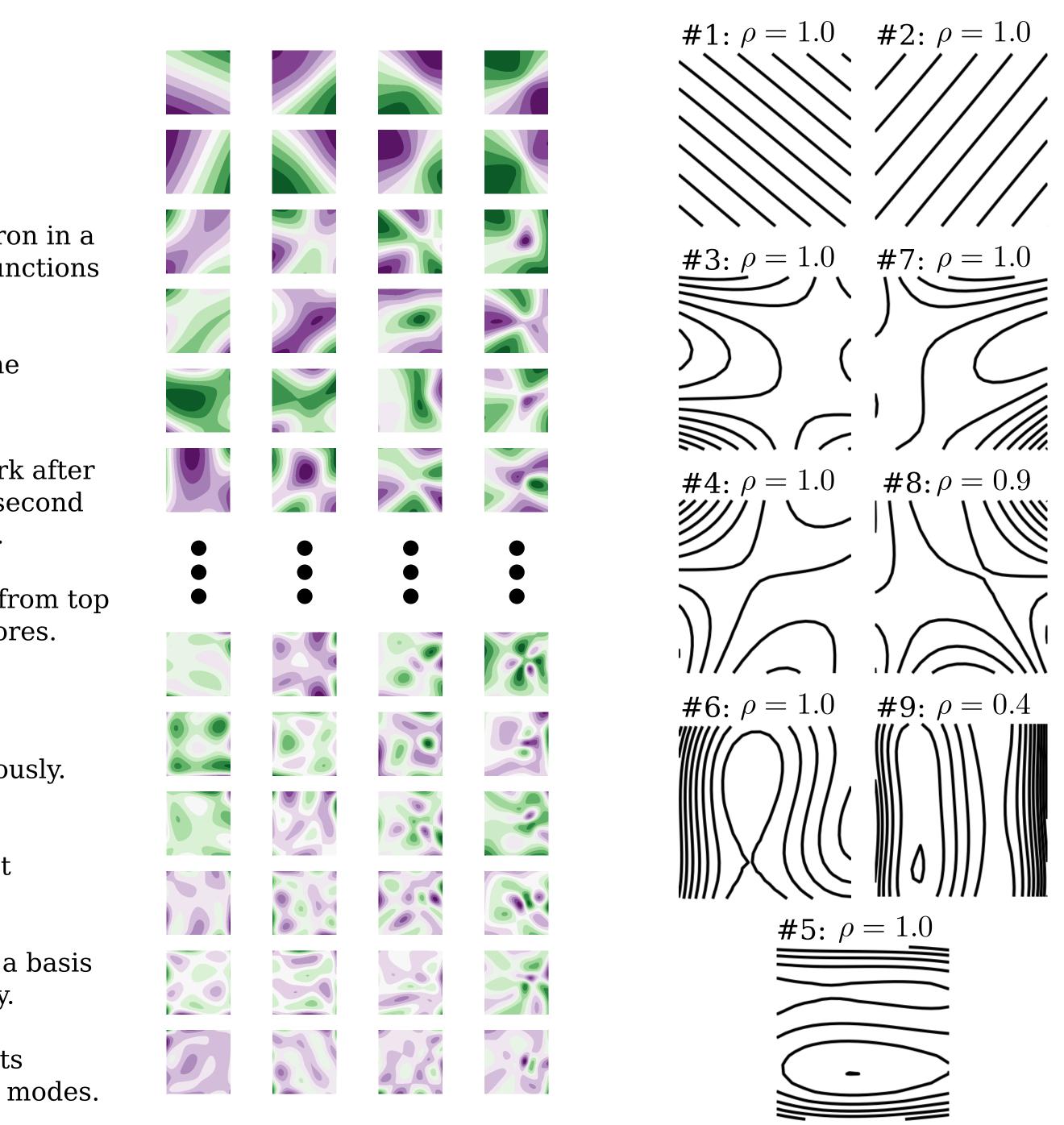
x' of second network

• **Below:** From the matrices, we extract the self-similarity $ho_{\rm self}$, the similarity $\rho_{\Delta x'=0}$ across random seeds at fixed x', and the similarity as a function of x', $\rho_{\Delta x'}$.

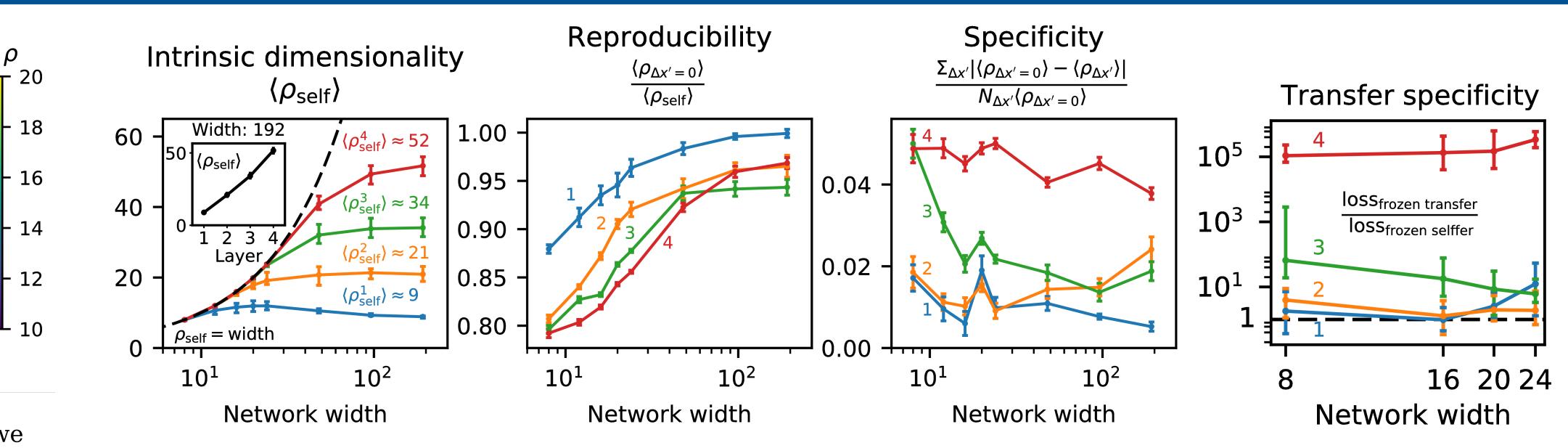




Т	he	f	rc



Quantifying layer specificity versus generality



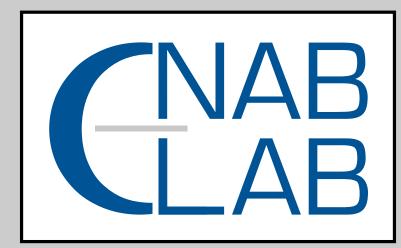
• The **intrinsic dimensionality** converges at high widths, as layers converge to finite-dimensional representations.

• Wide layers also have very high **reproducibility** across different random initializations.

• The **fourth layer** has **high specificity**, as its functional behaviour changes significantly when x' varies.

• The first layer has low specificity, because it learns a **general representation** that works well for all x'.

• The second layer is also quite general, but the third layer transitions from specific in narrow networks to general in wide networks.



faculty.uoit.ca/dehaan/cNAB.LAB/

st layer learns coordinates

• Left: The nine leading components in the first layer of a network of width 192 trained at x'=0.6 after layer-wise SVCCA with itself.

• Labels show similarity values and their order when sorted by similarity.

• They **act as coordinates** over the input domain. The contour lines are densest where each coordinate is most sensitive.

• **First row:** These are simply rotations of the two **original coordinates**, x and y.

• Second and third rows: These four, together, show position relative to the four corners of the domain.

• Fourth and fifth rows: These capture distance to the **four walls** of the domain.

• For all sufficiently wide networks, the leading components of the first layer are mixtures of these features.

• This result is **reproducible** across different random initializations.

• It is also **general**, in that it does not depend on the x' of the two networks used for layer-wise SVCCA.

• To validate our measure of specificity, we also measured specificity using an existing approach based on transfer learning tests (Yosinski et al. 2014, Adv Neural Inf Process Syst. 3320–3328).

• We found good agreement between the measures, and our method was orders of magnitude faster.

