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Abstract—Compositional Zero-Shot Learning (CZSL) aims to
predict unknown compositions made up of attribute and object
pairs. Predicting compositions unseen during training is a chal-
lenging task. We are exploring Open-World Compositional Zero
Shot Learning (OW-CZSL) in this study, where our test space
encompasses all potential combinations of attributes and objects.
Our approach involves utilizing the self-attention mechanism be-
tween attributes and objects to achieve better generalization from
seen to unseen compositions. Utilizing a self-attention mechanism
facilitates the model’s ability to identify relationships between
attribute and objects. The similarity between the self-attended
textual and visual features is subsequently calculated to generate
predictions during the inference phase. The potential test space
may encompass implausible object-attribute combinations arising
from unrestricted attribute-object pairings. To mitigate this issue,
we leverage external knowledge from ConceptNet to restrict
the test space to realistic compositions. Our proposed model,
Attention-based Simple Primitives (ASP), demonstrates compet-
itive performance, achieving results comparable to the state-of-
the-art. Code is available at https://github.com/ans92/ASP.

Index Terms—Compositional Zero-Shot Learning, Self Atten-
tion, Attributes, Objects

I. INTRODUCTION

Humans are capable of recognizing basic concepts in intri-
cate, novel contexts. So, for example, a folded chair looks very
different and works very differently from a folded paper, but
humans do not have any problem in identifying both with the
concept of folded. The traditional machine learning and deep
learning approaches, however, fail to learn these semantics
from the statistical associations that they are typically pro-
grammed for. The ability to reason about shared and discrim-
inative properties of objects, and identify their attributes is a
distinctively human ability, that is very ambitiously mimicked
with the task of Compositional Zero-Shot Learning (CZSL).

CZSL aims to learn visual concepts as compositions of
attribute and object primitives. For example, a composition
Red Car consists of attribute Red and object Car as shown
in Fig. 1. The formulation of the task of visual learning
as compositions of primitives is a paradigm that mimics
cognition and finds its applications in a variety of computer
vision applications, including but not limited to image retrieval
[2], [30], visual question-answering [16], [37], and image
captioning [31], [32]. This compositionality and contextuality

Fig. 1. In Compositional Zero-Shot Learning we have training set in the
form of compositions that consist of attributes like “Red, White” and objects
like “Car, Cake”. Traditional image recognition models typically can only
predict known compositions, but these struggle to compose new compositions
during testing. In contrast, compositional zero-shot learning model effectively
predicts new compositions during testing, as evidenced by the example of the
“Red Cake”.

lays the foundation for learning of the long tail of visual
concepts very efficiently with a small set of basic primitives.

The CZSL task has two settings: Closed-World and Open-
World. Traditionally, closed-world setting has been used to
evaluate the models. However, [22] proposed the open-world
setting. In a closed-world setting, its assumed that test-time
compositions, are known a-priori. In case of generalized CZSL,
test-time compositions contain both seen or unseen during
training. A closed-world situation is depicted in the Fig.
2. Training-set consists of three compositions (Rusty Cycle,
White Cake & Red Car) and their respective images. However,
during the testing-time two more compositions, White Car
and Red Cake, and their images might be present. Therefore,
CZSL model’s task is to predict the “Red Cake” using the five
compositions provided in both the training and testing sets.

In an open-world context, the test-time, composition set Ct

consists of all possible combinations of attributes and objects.
The Ct is not only quite large, as it grows proportional unique
attributes and objects, but might contain compositions that
might be unfeasible in real-world. Rusty Cake is an example979-8-3503-7903-7/24/$31.00 ©2024 IEEE
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Fig. 2. Example demonstrating the difference between closed-world and open-
world settings. In closed-world setting we assume that we know the test set a
priori. However, in open-world setting we do not assume any knowledge of
the test set. As such the test set contains all possible combinations of training
attributes and objects. Composition “Red Cake” is highlighted to indicate the
image that the model needs to predict.

of unfeasible composition, in the case depicted in Fig. 2.
CZSL demands two main capacities in a model: (1) the

ability to compose and (2) the ability to contextualize. The
concept of compositionality has been duly explored in the
literature, with a composition of classifiers [26], modular
networks [35], and composition of text embeddings with the
attribute as operator [28] and graph neural networks [27]. But
equally important is the ability to contextualize the attributes
and objects to new compositions. Since these concepts are
more semantic than visual, one object can appear drastically
different under the influence of different attributes. Similarly,
the same attribute can appear drastically different in the
context of different objects. For example, the concept of old
manifests with different visual features in the case of an
elephant and totally unique visual features in the case of a
car, see Fig. 3. Similarly, wet looks different in the context of
the ground as compared to that of a cat (Fig. 3). Therefore, in
addition to compositionality, we build a model that captures
this contextuality between attributes and objects.

This paper makes the following contributions:
• develops Attention-based Simple Primitives (ASP) model

for open-world compositional zero-shot learning that uses
the self-attention mechanism between attributes and ob-
jects to capture (visual) interactions between these; and

• evaluates the proposed model on MIT-States, CGQA,
and UT-Zappos benchmarks, showing that our method
either outperforms or achieves results comparable to those
reported by state-of-the-art methods.

II. RELATED WORK

Compositional zero-shot learning: Recently, there has been
significant attention given to Compositional Zero-Shot Learn-
ing (CZSL), which involves predicting joint labels for objects
and attributes. Humans demonstrate a remarkable tendency to

Fig. 3. Demonstration of Visual Diversity in Primitives. The attribute Old
looks drastically different in the context of Elephant (animate object) vs Car
(inanimate object). Similarly the attribute Wet looks drastically different in
the context of Cat (animate object) vs Ground (inanimate object).

recognize concepts in different contexts and generalize them
to novel contexts. Machines have yet to master this ability.

The earliest approaches in CZSL tried to learn independent
classifiers for attribute and object primitives but it failed to
capture the joint context of the attribute-object compositions.
[26] learns a transformation network to capture the relation
between primitive concepts.

Many previous works build on the compatibility learning
framework, with two major approaches. The first category
builds on the idea that attributes lack independent, visual
representation and thus treats them as operators on objects.
It include works that treat attributes as a linear transformation
of objects for learning a composite representation [28]. [20]
treats attributes as modifiers of objects while adhering to group
axioms, particularly symmetry of object representation under
state transformations.

The second category where the aim is to learn the compati-
bility score of image embedding with composition embedding
spawns a diverse array of approaches. [35] learns a modular
representation of image embedding, with a gating mechanism
conditioned on compositions, which allows modeling of the
joint context of the image, object, and state. [41] develops
a conditional generative approach for learning compositional
embedding in an adversarial framework. [42] pools image
features from various levels of CNN, and learns compatibility
with quintuplet loss under an adversarial framework. CGE
[27] learns globally consistent composition embedding, with
graph regularization. Compcos [23] proposes an open-world
scenario, where test time predictions are not limited to the
set of predefined compositions. Co-CGE [22] combines both
the methods, [27] and [23] and extends CGE [27] to open-
world setting. Compcos [23] and Co-CGE [22] utilize training
compositions to establish the feasibility of compositions in
an open-world environment. [3] attempts to uncorrelated the
object and attribute representations and deal it with a causal
perspective for better generalization. [36] proposes to filter out
spurious correlations between attribute and object primitives
with independence loss and introduce the desired context in
the composition embedding by following it with prototype
graph propagation. [8] uses recurrent attractor networks in the
linguistic and visual pathways to improve stability and gener-
alization of composition prototypes, by exploiting the property
of convergence and basin of attraction of attractor networks.
[7] defines a linguistic graph encoder for information sharing



Fig. 4. ASP model architecture. After concatenating attribute and object features, we compute self-attention between attributes and objects to obtain the
interactions between them. Then we get attribute as well as object features and project these to Attribute Space (AS) and Object Space (OS), respectively.
MLPs are used for projection. Next, we compute the Cosine similarity between attribute image features and composition attribute features. Similarly, we
obtain Cosine similarity between object image features and composition object features.

between attributes and objects, for smooth generalization to
novel compositions. [44] introduces episodic training for zero-
shot framework, and uses cross attention to better capture the
joint context of compositions and images. From a contextual
perspective, [12] addresses the CZSL issue by conditioning
the attributes on objects and vice versa in order to capture the
contextual nature of the composition.

Recent work [17] treats attributes and objects separately
with independent classifiers to recognize attributes and objects
in an open-world setting. ConceptNet [38] has been utilised
by them to calculate the feasibility of compositions. This kind
of independent classifier strategy, as previously mentioned in
publications [17], performs better in an open-world context
than in a closed one since there are less attributes and objects
in an open-world context than there are combinations of those
attributes and things.
Attribute classification and zero-shot learning: Very closely
tied to the problem of CZSL is the problem of Attribute
Classification. Attribute classification follows the route of
learning to describe objects in terms of their attributes, rather
than predicting their class labels. It finds use in image retrieval
[34] and attribute-based zero-shot learning (ZSL) of objects.
Prototype Learning [1], [45], [47] and Generative Models
[11], [43], [48] are two prevalent approaches in ZSL. Score
calibration [15], [19], [21] is also explored for better tuning
to unseen classes in ZSL.
Attention mechanism: Self-attention is a building block of
Multi-head attention that has been used in transformer archi-
tecture and was introduced in [40]. Attention was originally

proposed for Language related models. However, recent works
[6], [9], [33], [10] uses attention mechanism for computer
vision related tasks. [18] uses an attention mechanism for
Compositional Zero-Shot Learning by computing attention
between compositions. They train and test their model in a
closed-world setting.
Our approach lies at the intersection of different approaches.
Like [17] we have predicted attributes and objects inde-
pendently but in addition to [17] we have also included
semantic knowledge of composition in our model by allowing
attention between attributes and objects. [18] also included
attention mechanism but they only deal with closed-world
settings. However, unlike [18] that has computed attention be-
tween compositions, we computed attention between attributes
(states) and objects. As we are adding attention between
attributes and objects in an open-world setting, this makes our
approach different from the previous. Different from [12], our
approach involves calculating similarities between attributes
and objects using self-attention instead of computing condi-
tional attributes and objects. This will enable us to capitalise
on the interaction between attributes and objects.

III. APPROACH

Proposed CZSL model aims to understand the relationship
between attributes, sometimes referred to as states, and objects
using the training data. Subsequently, at test time, the model
infers the attribute and object present in an image. What makes
this problem challenging is the fact that the model may not
have encountered this attribute/object pair during training time.
Consequently, the model needs to be able to generalize to new



attribute/object pairs, which requires the model to capture how
attributes and objects interact with each other in a particular
visual context. It is important to note that training data includes
all attributes and objects under consideration; however, it often
does not contain all possible attributed/object pairs. See Fig.
4 for the overall layout of our model.

A. Problem Formulation
Given the set of attributes A = {a1, a2, ..., an} and objects

O = {o1, o2, ..., om}, our composition set consists of C =
A × O. We deal with the task of visual classification where
each image x has a compositional label c. Specifically in our
case the compositional label is a pair of an object primitive o
and an attribute primitive a, i.e. c = {(a, o)|a ∈ A, o ∈ O}.
Ctrain is a subset of composition set C. The test set Ctest

is defined in three alternate ways in the CZSL literature. In the
classic CZSL setting, Ctest consists of all novel compositions,
Ctrain ∩ Ctest = ∅. [35] proposed Generalized CZSL setting
where test compositions consists of both Ctrain and Ctest such
that Ctrain ∩ Ctest ̸= ∅. Third is an open-world setting [27]
where test set consists of all the composition set, i.e. Ctest =
C.

B. Attention Based Simple Primitives
A feature extractor w : X 7→ Z computes image features z

for a given image x, i.e., z = w(x). Next, an image-object
encoder ϕoi : Z 7→ O projects image feature z to oi within
the object space O. Similarly, an image-attribute encoder ϕai :
Z 7→ A projects image feature z to ai within the attribute
space A.

Word embeddings are used to map object labels and attribute
labels into a common space. The key hypothesis of this
work is that the relationship between objects and attributes is
not independent of the visual appearance. We employ multi-
headed attention block to capture the relationship between
object labels and attributes. Multi-headed attention processes
the object and attribute embeddings and construct transformed
object and attribute embeddings. A object-context encoder ϕoc

projects the transformed object label feature to ci within the
object space O. Similarly, an attribute-context encoder ϕac : Z
projects the transformed attributed label feature to ai within
the attribute space A.

Cosine similarity between image object features and object
context features is used to predict the object. Similarly, cosine
similarity between image attribute and attribute context is
computed to predict the attribute.

The proposed method predicts object labels and attribute
labels independently; however, objects and attributes inform
each other through the multi-headed attention mechanism
mentioned above.

C. Knowledge Guidance for computing feasibility
To obtain the composition score probability of separate

predictions of attribute and objects are multiplied together
[17]. As an example, we multiply the scores of “Red” and
“Apple” to obtain the composition’s score of “Red Apple”.
We also have a large number of unfeasible compositions.

Not all of the compositions obtained by combining attributes
and objects are feasible. Following [17] we employ Con-
ceptNet [38] to remove unfeasible compositions. ConceptNet
is a type of knowledge graph in which words and phrases
are connected by labelled edges. Therefore, to determine a
composition’s score, our model compare the score of each
attribute to the corresponding object as follows:

cos = ρKB(s, o) (1)

where ρKB(s, o) denotes the score between s and o.

D. Inference

During inference, once the image features are extracted,
we use two multilayer perceptrons (MLPs), ϕsi and ϕoi, to
project image features into two distinct spaces: attribute space
and object space. Similarly, the model project attribute and
objects into textual embeddings and then pass them through
the attention block to establish attention between attributes
and objects. Subsequently, our model project these attributes
and objects into the attribute space and object space using
two MLPs, ϕac and ϕoc, respectively. In the attribute space,
cosine similarity is calculated between attribute visual features
and attribute textual features. Likewise, in the object space,
model also calculate the cosine similarity between object
visual features and object textual features. The final prediction
score is determined by multiplying the attribute and object
scores, and the composition with the highest score is predicted
as the image label. This process results in the overall prediction
function.

f = argmax
(s,o)∈Y

(
ϕsi(x).ϕac(s)

)
×

(
ϕoi(x).ϕoc(o)

)
(2)

Equation (2) does not take into consideration the feasibility of
the composition. We incorporate the feasibility score inferred
from the ConceptNet for the final prediction. Updated equation
is,

f = argmax
(s,o)∈Y,cso>0

(
ϕsi(x).ϕac(s)

)
×

(
ϕoi(x).ϕoc(o)

)
(3)

where cso > 0 in above function means that we have only
included the compositions that have positive feasibility.

E. Objective Function

We have used cross-entropy loss for objects as well as
attributes to train our model.

L =

N∑
i=1

Lstate(xi, si) + Lobj(xi, oi) (4)

= −
∑

(x,s)∈T

log
expp(x,s)∑

y∈S expp(x,y)
+
∑

(x,o)∈T

log
expp(x,o)∑

y∈O expp(x,y)

where T represents the test set, while s and o are part of the
state S and object O sets, respectively.



TABLE I
THE TABLE COMPARES THE OUTCOMES OF PRIOR MODELS TO OURS, ASP. FF INDICATES THAT THE MODEL EMPLOYS A FIXED FEATURE EXTRACTOR
FOR IMAGE FEATURES. THE TOP RESULTS ARE HIGHLIGHTED IN BOLD LETTERS, WHILE THE SECOND-BEST RESULTS ARE UNDERLINED. TOGETHER

WITH IMPROVING RESULTS FROM KG-SP ON MIT-STATES, WE HAVE REACHED STATE-OF-THE-ART ON CGQA. (HIGHER RESULTS ARE BETTER). BEST
RESULTS IN BOLD AND SECOND BEST UNDERLINED.

MIT-States UT-Zappos CGQA
Method S U HM AUC S U HM AUC S U HM AUC

SymNet [20] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CGE ff [27] 29.6 4.0 4.9 0.7 58.8 46.5 38.0 21.5 28.3 1.3 2.2 0.30

Compcos [23] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.39
Co-CGEff [22] 26.4 10.4 10.1 2.0 60.1 44.3 38.1 21.3 28.7 1.6 2.6 0.37
KG-SPff [17] 23.4 7.0 6.7 1.0 58.0 47.2 39.1 22.9 26.6 2.1 3.4 0.44

ASPff 21.6 7.2 6.7 1.0 59.0 42.8 38.5 21.6 26.8 2.1 3.4 0.41
CGE [27] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47

Co-CGE [22] 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78
KG-SP [17] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78

ASP 27.1 8.4 7.7 1.4 61.0 48.6 43.1 25.9 31.7 3.2 5.0 0.80

IV. EXPERIMENTS

In this section, we present the dataset details, evaluation
protocols, and implementation details are included. Exper-
imental results comparing previous state-of-the-art methods
with proposed methods and ablation study are also included.

A. Experimental Setup

Datasets: Following previous works [23], [22], [18] we tested
our model on 3 datasets, MIT-States [14], UT-Zappos [42],
[46] and CGQA [27]. MIT-States comprises a total of 63,440
images depicting 115 unique attributes and 245 unique object
classes. The splits of the dataset are defined as follows, a
training set of 30k images constituting 1262 compositions. A
validation set of 10k images and a test set of 13k images with
composition space equals 28,175 compositions. UT-Zappos is
the smallest of the 3 datasets and has only 16 attributes and
12 object categories. The splits of UT-Zappos are as follows,
a training set consisting of 23k images, and a validation and
test set consisting of 3k images. Test time compositional space
has 192 compositions. CGQA was recently proposed in [27]
that has a larger number of attributes and objects as compared
to MIT-States. It has 413 attributes and 674 object categories.
The splits of CGQA are as follows, a training set consisting
of 5592 pairs across 26k images; a validation set consisting of
4k images; and a test set consisting of 5k images. Test time
compositional space has 278,362 compositions.
Evaluation protocol: In our evaluation, we conducted the
experiment in an open-world setting [17], [22], [23], including
all possible combinations of attributes and objects to form
the test set. After following [17], [35], we introduced various
scalar bias terms to the seen composition scores to address
the bias for seen compositions. A large negative scalar bias
results in high unseen accuracy and low seen accuracy, while
a large positive scalar bias produces the opposite effect. By
adjusting the scalar bias from large negative to large positive,
we calculated the top-1 accuracy of both seen and unseen
compositions. The area under the curve (AUC), best harmonic
mean (HM), and the best seen and unseen accuracy were
derived from the seen-vs-unseen accuracy curve.

Implementation details: To extract image features, we used
ResNet18 [13] pre-trained on Imagenet as a feature extractor,
similar to earlier methods. Two 2-layer MLPs have been
employed as classifiers for attributes and objects. In the case
of CGQA, we have obtained attributes and object embeddings
using Word2Vec. In order to improve comparison with earlier
SOTA models, we have employed both Word2Vec [24], [25]
and FastText [5] for the two datasets, MIT-States and UT-
Zappos. Then we used an Attention block with one multi-head
attention layer followed by Dropout [39], Layer Normalization
[4], Linear layer, and ReLU [29] activation. Finally, two 2-
layer MLPs that map attention features to attribute and object
space have also been used. After the first layer, we have
utilised LayerNorm, ReLU, and Dropout in every MLP.

B. Quantitative Analysis

Results of Open-World Compositional Zero-Shot Learning
(OW-CZSL) are shown in Table I. Subscript “ff” in Table I
indicates that a fixed feature extractor for image features was
not fine-tuned throughout training. The top results shown in
bold, while the outcomes that came in second are underlined.

Results on MIT-States Dataset are shown in Table I. [22]
performs better than every other model in terms of Unseen,
HM, and AUC scores. CGE [27] achieved the highest accuracy
in terms of seen accuracy. Nonetheless, Unseen, HM, and AUC
scores show that our model, ASP, performs better than KG-
SP. Our model achieved particularly good results on the MIT-
States dataset as compared to KG-SP. Compared to KG-SP’s
7.5 unseen accuracy, ASP obtained 8.4. Even though the MIT-
States dataset is thought to be noisy [3], our model performs
better than KG-SP. Table II shows the results of our model
on MIT-States dataset. First row of Table II shows the success
examples while second row shows the failure examples of the
model. In second row, black labels are actual labels while the
red labels are wrong prediction made by our model.

The most recent dataset for the CZSL challenge is CGQA
proposed in [27]. Compared to the other two datasets, this
one is the largest and contains the most attributes and objects.
In comparison with KG-SP and all other models, our model
has attained the highest results. We surpassed all the models



Ancient Church Ancient Jungle Barren Island

Barren Lake Ancient Town Ancient Clock
Steaming Lake Large House Small Clock

TABLE II
SUCCESS EXAMPLES IN FIRST ROW AND FAILURE EXAMPLES IN SECOND

ROW OF MIT-STATES DATASET. THE GROUND TRUTH LABELS ARE
REPRESENTED BY THE COLOR BLACK, WHEREAS THE MODEL’S

PREDICTIONS ARE INDICATED BY THE COLOR RED.

including KG-SP in terms of HM, AUC and unseen accuracy.
We also obtained a higher seen accuracy compared to KG-
SP. Our improved unseen accuracy validates that the attention
mechanism of ASP allows for better generalisation to unseen
compositions.

In open-world environments, the method of independently
predicting primitives offers significant advantages. Consider
CGQA, the largest dataset, where model only have to predict
an image’s attribute from 413 attributes and its object from 674
objects. If our model were to predict composition, it would
need to select from 278,362 possible combinations, resulting
in decreased accuracy as indicated in Table I CGQA results.
While KG-SP [17] and ASP predict attributes and objects
separately, Compcos [22] focuses on predicting compositions.
Compared to the other two models, Compcos achieves a lower
score.

Although it is be beneficial to independently predict basic
elements in an open-world setting, the concept of composition
remains influential. As demonstrated in Fig. 3, primitives are
interdependent. Nevertheless, we argue that as the dataset
expands and encompasses more features and objects, numer-
ous improbable combinations emerge, leading to a decline
in model accuracy, as evidenced in the CGQA scenario. As
indicated in the results for Compcos in Table I, predictive
accuracy could be higher when working with a relatively small
dataset like MIT-States, but it decreases as the dataset size
grows, as observed in the case of CGQA.

The UT-Zappos dataset is small and contains various styles
of shoes. Because many types of shoes, such as leather,
patent leather, and faux leather, are quite similar, our attention
mechanism did not perform well on this specific dataset.
Nevertheless, our model still surpasses all other models in the
harmonic mean.

White Shirt Yellow Umbrella Black Couch

Tan Floor Red Bush Large Refrigerator
Hardwood Floor Large Tree Red Window

TABLE III
SUCCESS EXAMPLES IN FIRST ROW AND FAILURE EXAMPLES IN SECOND

ROW OF CGQA DATASET. THE GROUND TRUTH LABELS ARE
REPRESENTED BY THE COLOR BLACK, WHEREAS THE MODEL’S

PREDICTIONS ARE INDICATED BY THE COLOR RED.

C. Qualitative Analysis

Within this section, we will be showcasing qualitative
findings. The initial row in Table II depicts instances where our
model succeeded, while the second row illustrates instances
where it failed. As the images display, the model successfully
predicted “Ancient Church”, “Ancient Jungle”, and “Barren
Island”. Nonetheless, it inaccurately predicted “Barren Lake”
as “Steaming Lake”, “Ancient Town” as “Large House”, and
“Ancient Clock” as “Small Clock”. Despite these inaccurate
predictions, the model’s estimations are still in close proximity
to the actual values. In three examples, two have accurately
predicted objects, and the predictions are close to ground truth.

In Table III of the CGQA dataset, the first row showcases
our model’s successful predictions, including “White Shirt”,
“Yellow Umbrella”, and “Black Couch”. The second row,
however, displays instances where the model’s predictions
were not successful. The model correctly identified the object
in the first example. In the second example, our model
misidentified “Bush” as a “Tree” which are closely related.
In the third example, the model’s prediction of “Refrigerator”
as a “Window” seems reasonable upon observing the image,
as there is a table and the “Refrigerator” resembles a window.
We can conclude that attention plays a vital role in enabling
the model to make more accurate predictions based on the
given image.

D. Ablation Study

Number of heads in Multihead attention: Multi-head atten-
tion includes many heads. A self-attention system exists inside
every head, as demonstrated in [40]. We have conducted multi-
head attention trials with varying head counts. Our studies
were conducted on MIT-States using a fixed feature extractor.
Additionally, we seeded the values to ensure that the MLPs
were initialised uniformly. Our model was trained once using
80 epochs for each experiment, and it was then evaluated using
the test set.



Fig. 5. Graph showing the effect of heads in Multihead Attention. On x-axis,
there is the number of heads while on the y-axis there is the Harmonic mean.

Fig. 6. Graph showing the effect of the number of linear layers in all the
MLPs on the Harmonic Mean.

As shown in Fig 5 HM is almost the same in each ex-
periment. The highest accuracy was achieved with two heads
in the multi-head attention layer. HM is 6.9 when there are
two heads, and 6.8 when there are thirty heads. As a result,
accuracy does not increase as the number of heads in the multi-
head attention layer grows.

Number of layers for MLP: We have examined how each
MLP’s number of layers affects MIT-States using fixed feature
extractors. The impact of the number of linear layers in an
MLP on the harmonic mean is depicted in Fig. 6. Similar to
Fig. 5 we have trained the model once for 80 epochs for each
experiment and then evaluated on the test set. It is evident
that a single layer prevents the model from understanding
the intricate relationships between the attributes and objects.
Nevertheless, the model is able to effectively learn the intricate
relationships between them when the number of layers is
increased to two. However, as we increased the number of
layers, the model model likely overfits the data and hence its
Harmonic Mean decreased.

V. CONCLUSION

We propose a novel solution for the Compositional Zero-
Shot Learning (CZSL) in the Open-World setting. Unlike
in closed-world CZSL, where composition set during test
is known in advance, open-world setting assume no prior
knowledge therefore include all possible combinations of at-
tributes and objects. Primitives, such as attributes and objects,
have been predicted independently. Our model has employed
attention mechanism between primitives to capture their inter-
actions, to generalize effectively from training compositions to
test compositions. Our approach of independently predicting
primitives performs better due to the significant reduction
in our test space in open-world CZSL. In the open-world
CZSL, there are also unrealistic compositions which we have
addressed by utilizing external knowledge from ConceptNet.
Our model achieved the top performance on the CGQA
dataset, surpassing all previous models and achieving higher
accuracy than KG-SP.
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