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Abstract
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2011

Droplet splatter dynamics is an important study in the field of forensics since a crime

event can produce many blood stains. Understanding the origins of the blood stains

from pure observations is very difficult because much of the information about the

impact is lost. A theoretical model is therefore needed to better understand the dy-

namics of droplet impact and splatter. We chose to explore a fluid modelling method

known as Smoothed Particle Hydrodynamics (SPH) to determine whether it is capable

of modelling droplet splatter accurately. Specifically, we chose to investigate an SPH

version of a non-Newtonian pressure correction method with surface tension. Three

experiments were performed to analyze the different aspects of SPH. From the results

of the experiments, we concluded that this method can produce stable simulations if

an artificial viscosity model is included, a third-order polynomial kernel is used and

the pressure boundary condition on surface particles are non-zero.
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Chapter 1

Introduction

1.1 Objective

Bloodstain pattern analysis is the science of looking at the stain blood droplets make

on surfaces and attempt to determine the event that caused the stain. In many cases,

it involves looking at the bloodstain and reconstructing the trajectories of individual

blood droplets to determine their individual points of origin. This method, known

as backtracking, works by analyzing the stain’s dimensions and using some basic

trigonometric relations, the direction of impact of the blood can be determined [9].

Once the direction of the impact is determined, rays are projected backwards along

the angle of impact. The intersection of all the rays from different bloodstains deter-

mine the approximate location of the origin of the blood. This method can only be

used for very specific types of stains, such as elliptical stains. Not all blood droplets

produce elliptical stains so using the aforementioned method cannot be used. Un-

derstanding the origins of the blood stains from pure observations is difficult because

much of the information of the impact is lost (such as velocity of impact). A theoret-

ical model is therefore needed to better understand the dynamics of droplet impacts.

The objective of this thesis is to work towards developing a model to simulate non-

1



CHAPTER 1. INTRODUCTION 2

Newtonian droplets in hopes that it will be used to better understand how various

blood stains are produced.

To investigate the dynamics of blood droplets, we chose a method known as Smoothed

Particle Hydrodynamics (SPH) as a simulation technique. SPH was chosen for a num-

ber of reasons; firstly, not much is known about the full capabilities of SPH so we

chose to investigate this method further to determine its ability to simulate fluid mo-

tion; second, it is easier to implement compared to other methods; finally, SPH is

quite customizable. Adding new physical effects to the fluids such as heat transfer

or magnetic fields, for example, is relatively easy compared to the other methods of

simulation. The objective of this thesis is to investigate the capabilites of SPH to deter-

mine whether it is a suitable modelling technique to use to understand the dynamics

of blood droplets.

1.2 Related Work

There are many methods available for simulating fluids, some of which are finite dif-

ference methods and finite element methods [15]. Each of these have their advantages

and disadvantages and are better suited to solve different types of problems. Finite

difference methods, solve the solution on very structured, rectangular, grids and are

best used on domains where the boundary walls are at 90 degree angles from each

other. Finite element methods, on the other had, solve the solution on unstructured

grids. This allows the boundaries of the domain to be non-rectangular. Both finite

difference and element methods are known as fixed-grid methods. Like the name im-

plies, the grid (structured or unstructured) the solution is solved on does not move, it

remains fixed for the entire duration of the simulation. SPH is known as a mesh-free

method. In mesh-free methods, the solution is not bound to a fixed mesh. The node

points at which the solution is solved can move in time. In SPH, the nodes that the so-
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lution is solved at act like particles of fluid that move through the domain. Essentially,

SPH is a cross between a particle method and an interpolation method.

SPH was originally developed in the 1970s to model astrophysical phenomena

such as large scale gas dynamics in galaxies[5] [11]. Since then, there have been many

advancements in the technique which have allowed it to simulate not only compress-

ible fluids at the astrophysical scales, but also incompressible fluids at more common-

place terrestrial length scales. In traditional SPH, the mass density of the fluid is de-

termined by the number density of particles within a certain volume of space (See

Section 2.3).The density is then used to calculate other properties of the fluid such

as the pressure [12]. This method, known as the summation density [13] approach,

works well for modeling gas dynamics; gases are highly compressible, and, more-

over, the summation density approach is guaranteed to conserve mass. For fluids of

lower compressibility, the summation density approach is not physically reasonable.

Instead, the equation of continuity is evolved in time to compute the density [13]. The

density is again used to calculate the pressure from some kind of equation of state.

Both, summation density approach and continuity equation approach assume that

the fluid is compressible, which does not work well with fluids that are considered

incompressible unless the equation of state is very stiff, i.e., small changes in density

lead to large changes in pressure. A stiff equation of state requires much smaller step

sizes in the time-integration, which is not very desirable since the run time of the sim-

ulation would be very long. A projection method was developed by Cummins and

Rudman that enforces incompressibility by using an SPH derived pressure correction

method [3]. This method allows for larger time steps to be used and guarantees the

flow is incompressible by staying divergence free.

SPH can be used to model fluids at many different scales. For fluids with free

surfaces at large scales, such as lakes or rivers, surface tension does not need to be

explicitly modeled into the equations since the length scales at which surface tension
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forces apply are small compared to the spatial resolution. But on small length scales, a

correct model of surface tension must be implemented because it highly influences the

flow of the fluid. To model surface tension in SPH, particles that appear on the surface

must be differentiated from particles that appear inside the fluid. The most common

method of identifying surface particles is to see which particles have a density lower

than the reference density. Particles near the surface will have a lower density due

to there not being enough particles in the neighbourhood to contribute to the density

calculation. Surface normals and curvatures can be found by computing the first and

second derivatives of the density field [14]. Tartakovsky and Meakin modeled surface

tension by using a pairwise force that attracted nearby particles similar to a Lennard-

Jones potential[18]. Zhang et al used the actual Lennard-Jones potential to model

surface tension [20]. Haque and Dilts used a different method for identifying surface

particles. Rather than using the density of the particles to determine which particles

appear on the surface, surface particles are determined by constructing imaginary cir-

cles (spheres in three dimensions) around each particle and determining if a particle’s

circle is completely overlapped by its neighbours circles [6]. A particle is identified

as a surface particle if its circle is not fully covered by neighbouring circles. Once

surface particles are found, the surface curve is locally constructed at each surface

particle using a moving least squares method. The surface normals and curvature can

be calculated analytically from the reconstructed surface curve.



Chapter 2

Introduction to Smoothed Particle

Hydrodynamics

Smoothed particle hydrodynamics is an interpolation method used to discretize par-

tial differential equations over a Lagrangian grid. Unlike Eulerian grids, where the

grid nodes do not move with time, Lagrangian grid nodes move according to some

flow field. In the case of fluids, the grid nodes move with the velocity field. The grid

nodes in SPH also represent particles of fluid that contain mass. These particles are

not fluid molecules, but represent some volume of the fluid depending on the scale of

the system.

2.1 Formulation of Smoothed Particle Hydrodynamics

2.1.1 Function Approximation

The formulation of smoothed particle hydrodynamics starts with the identity for a

scalar function

f (r) =
∫

Ω
f (x) δ (r− x) dx, (2.1)

5
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where f (r) is a scalar function of a vector variable, Ω is the entire spatial domain and

δ(r− x) is the Dirac delta function that is commonly seen in the SPH literature as

δ (r− x) =


+∞, r = x

0, r 6= x
(2.2)

In Equation 2.1, the delta function will be zero for all r 6= x, so the integration

will yield the value of the function where x = r. In numerical integration, the delta

function is impossible to use in its current form due to the fact that its value goes to

infinity, so it must be approximated with another function. In SPH, the delta function

is approximated with a Gaussian-like function called a kernel or smoothing function.

The exact form of the smoothing function can vary, but must have the following prop-

erties:

∫
Ω

W(r, h)dV = 1 (the Normalization Condition); (2.3)

lim
h→0

W(r, h) = δ(r) (the Delta Function Property); and (2.4)

W(r, h) = 0, |r| > h (Compact support) (2.5)

In Equation 2.4 the parameter h is a scalar constant known as the smoothing length, it

represents how wide the smoothing function is. In addition to the above properties,

the smoothing function should also be positive, even and monotonically decreasing

away from the origin.

When the delta function δ is replaced by a particular smoothing kernel W in the

integrand of Equation 2.1, we obtain

f (r) ≈
∫

Ω
f (x)W (r− x, h) dx (2.6)
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as an integral representation of a function f (x).

When approximating a function using the kernel, the following convention is adopted

in the SPH literature rather than using the ≈ symbol [10].

〈 f (r)〉 =
∫

Ω
f (x)W (r− x, h) dx (2.7)

Consider the one-dimensional case of Equation 2.7. By Taylor Expanding the func-

tion f (x) around the point f (r) we get

〈 f (r)〉 =
∫

Ω

[
f (r) + f ′(r)(x− r) + O(|x− r|2)

]
W(r− x, h)dx (2.8)

= f (r)
∫

Ω
W(r− x, h)dx + f ′(r)

∫
Ω
(x− r)W(r− x, h)dx

+
∫

Ω
O(|x− r|2)W(r− x, h)dx (2.9)

= f (r)
∫

Ω
W(r− x, h)dx + f ′(r)

∫
Ω
(x− r)W(r− x, h)dx

+O(h2), (2.10)

where O is the limiting behaviour of the Taylor Expanded function that is truncated at

its linear term. In Equation 2.10, the integral in the first term is equal to 1 by the nor-

malization condition ( Equation 2.3 ). The integrand in the second term is a product

of an odd and an even function (assuming W is chosen to be even), therefore the inte-

gration over the domain will reduce to zero and the function approximation reduces

to

〈 f (r)〉 = f (r) + O(h2) (2.11)

As can be seen from the above equation, the integral approximation using the

smoothing function, in replacement of the delta function, yields an error that is pro-

portional to h2. This derivation assumes that the smoothing function is symmetric

about it’s origin. Non-symmetric smoothing functions do exist, but they are only used

on the boundaries of the domain [10].
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2.1.2 Derivative Approximation

To obtain the derivative of a function, we can replace the function value, f (r), in equa-

tion 2.7 with the gradient of f (r).

〈∇ f (r)〉 =
∫

Ω
[∇ f (x)]W(r− x, h)dx, (2.12)

By using a rearrangement of the product rule

[∇x f (x)]W(r− x) = ∇x [ f (x)W(r− x, h)]− f (x)∇xW(r− x, h) (2.13)

and substituting it into equation 2.12, we are left with

〈∇r f (r)〉 =
∫

Ω
∇x [ f (x)W(r− x, h)] dx−

∫
Ω

f (x)∇xW(r− x, h)dx (2.14)

=
∫

S
f (x)W(r− x, h)ndS−

∫
Ω

f (x)∇xW(r− x, h)dx (2.15)

The first term in the second step is replaced with a surface integral using the di-

vergence theorem. Since the smoothing function goes to zero at a finite distance away

from x, the surface integral is therefore equal to zero and we are left with the integral

approximation of the derivative of the function f .

〈∇r f (r)〉 = −
∫

Ω
f (x)∇xW(r− x, h)dx (2.16)

Using the integral representation of the function shifts the derivative from the func-

tion onto the kernel. The kernel, since it is a known analytic function, can easily be

differentiated. Equation 2.17 can be used to compute the gradient of a scalar func-

tion. By following the same derivation, for a vector function, we are left with a similar

equation to compute its divergence,

〈∇r · f(r)〉 = −
∫

Ω
f(x) · ∇xW(r− x, h)dx (2.17)
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The accuracy of the function approximations is O(h2) but the accuracy of the deriva-

tives is close to O(h). Refer to section 4.2 for additional information.

2.2 Kernel Functions

The kernel function, W, can be chosen from many possible classes of functions. Quali-

tatively, the graph of a one-dimensional kernel function typically resembles a radially-

symmetric Gaussian bell-shaped curve. However, in accordance with Equation 2.5,

any kernel function necessarily has compact support.1 The kernels that we will be

using are the sixth order polynomial kernel, W6(r), and the third order polynomial

kernel, W3(r). The kernels are usually defined as a function of radial distance between

two particles. The shapes of these kernels are shown in Figures 2.1 and 2.2.

W6(r, h) =


A6

(
1−

( r
h
)2
)3

, r < h

0 , Otherwise
(2.18)

W3(r, h) =


A3
(
1−

( r
h
))3 , r < h

0 , Otherwise
(2.19)

The constants A6 and A3 are the normalizing constants required to make the spatial

integral over the kernel’s domain equal to 1. The normalizing constants for one, two

and three dimensions are defined in the following table.

1Recall that a function W : Rn → R is said to have compact support if W is everywhere continuous
and there exists h > 0 such that W(x) = 0 whenever |x| ≥ h
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Coefficient 1D 2D 3D

A6
35

32πh
4

πh2
315

64πh3

A3
2
h

10
πh2

15
πh3

Table 2.1: Coefficients for the different kernels in one, two and three dimensions.

Figure 2.1: Sixth-order Guassian-like kernel.

2.3 Particle Approximation

In SPH, the domain is filled by a number of particles that hold various local properties

of the system, for example: temperature, energy, mass, etc. These particles take up a

finite volume in the domain. The particle approximation occurs when the integral in

equation 2.7 is replaced by a summation.
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Figure 2.2: Third-order polynomial kernel, also known as the Spikey kernel

〈 f (r)〉 =
∫

Ω
f (x)W (r− x, h) dx (2.20)

=
N

∑
j=1

f jW
(
r− rj, h

)
Vj (2.21)

=
N

∑
j=1

f j
mj

ρj
W
(
r− rj, h

)
(2.22)

Here, r is any position in space, rj is the position of particle j, f j is the value of the

function that particle j holds. For example the temperature at the particle’s location.

The spatial volume, Vj is replaced with the mass, mj of particle j divided by its density,

ρj. The summation is taken over all particles in the system, but since the smoothing

function goes to zero after a certain distance away from r, only particles within that

distance need to be included in the summation, the rest can be ignored.

In many cases, we are concerned with a quantity or a derivative at a particle’s

location rather than at some arbitrary location in space. The following convention is
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used when computing the particle approximation at the location of particle i:

〈 f 〉i =
N

∑
j=1

f j
mj

ρj
W
(
ri − rj, h

)
(2.23)

=
N

∑
j=1

f j
mj

ρj
W
(
|rij|
)

(2.24)

=
N

∑
j=1

f j
mj

ρj
Wij (2.25)

=
N

∑
j=1

f j
mj

ρj
Wij (2.26)

where the following notation is used: rij = ri− rj, and Wij = W(rij). Note here that the

smoothing function, W, is usually a radially symmetric function and is most typically

defined as a function of distance rather than a function of position. Likewise, the

derivative of f in the particle approximation can be obtained by

〈∇ f 〉i = −
N

∑
j=1

f j
mj

ρj
∇jW

(
ri − rj, h

)
(2.27)

=
N

∑
j=1

f j
mj

ρj
∇iW

(
ri − rj, h

)
(2.28)

=
N

∑
j=1

f j
mj

ρj
∇iW

(
|rij|
)

(2.29)

=
N

∑
j=1

f j
mj

ρj
∇iWij (2.30)

where ∇i the gradient with respect to particle i’s coordinates and ∇j is the gradient

with respect to particle j’s coordinates. In Equation 2.28, the gradient operator has

switched to particle i’s coordinates thereby removing the negative from the equation.

Since the smoothing function, W, is a function of radial distance, |r|, the gradient of

the smoothing function must be determined from the chain rule.
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∇iWij =
∂W
∂r
∇ir (2.31)

=
∂W
∂r
∇i

(√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)
(2.32)

=
∂W
∂r

1
|rij|

rij (2.33)

=

(
∂W(|rij|)

∂r
· 1
|rij|

)
rij (2.34)

It is important to note that the term within the bracket in Equation 2.34 can be non-

singular at |rij| = 0 depending on which kernel is used. The sixth order polynomial is

non-singular at |rij| = 0 while the third order polynomial is singular.2

The density of each particle, ρi, is determined using the particle approximation of

the density itself:

〈ρ〉i =
N

∑
j=1

ρj
mj

ρj
W
(
ri − rj, h

)
(2.35)

〈ρ〉i =
N

∑
j=1

mjW
(
ri − rj, h

)
(2.36)

Here, the subscript i on the left side of Equation 2.36 indicates the particle approx-

imation to the quantity within the angled brackets at the location of particle i.

The density of each particle can be calculated using Equation 2.36, after which any

property (temperature for instance) can be calculated in any location in space using

Equation 2.22.

2.4 Alternative methods for computing gradients

Consider the following identity obtained from the product rule of derivatives.

2When implementing this in code, it is better to compute
∂Wij

∂r
1
|rij |

as one value rather than computing
∂Wij

∂r and 1
|rij |

by themselves and then multiplying the two terms together.
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∇ f (x) =
1
ρ
(∇(ρ f (x))− f (x)∇ρ) (2.37)

By applying the derivative approximation (Equation 2.30) to all the gradient oper-

ators and leaving the particle values for all variables that are not part of the gradient,

we obtain

∇ f (x) =
1
ρ
(∇(ρ f (x))− f (x)∇ρ) (2.38)

〈∇ f 〉i =
1
ρi

(
N

∑
j=1

ρj f j
mj

ρj
∇iWij − fi

N

∑
j=1

ρj
mj

ρj
∇iWij

)
(2.39)

〈∇ f 〉i =
1
ρi

N

∑
j=1

mj
(

f j − fi
)
∇iWij (2.40)

Equation 2.40 is another form of computing the gradient (or divergence if f is a

vector).

Consider now the identity obtained from the quotient rule of derivatives. Follow-

ing the same procedure as the previous derivation, one can find another representa-

tion of the gradient.

∇
(

f (x)
ρ

)
=

ρ∇ f (x)− f (x)∇ρ

ρ2 (2.41)

∇ f (x) = ρ

(
∇
(

f
ρ

)
+

f
ρ2∇ρ

)
(2.42)

〈∇ f 〉i = ρi

(
N

∑
j=1

f j

ρj

m
ρj
∇Wij +

fi

ρ2
i

N

∑
j=1

ρj
m
ρj
∇Wij

)
(2.43)

〈∇ f 〉i = ρi

N

∑
j=1

mj

(
fi

ρ2
i
+

f j

ρ2
j

)
∇Wij (2.44)

Equations 2.40 and 2.44 provide an alternative formulation for the gradient of a

function. The alternative forms are more commonly used in physical simulations be-

cause the particle function values appear in pairs. Equation 2.44 is anti-symmetric for
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the interchange of particle indicies, that is 〈∇ f 〉ij = − 〈∇ f 〉ji. If ∇ f represents a force

in a physical simulation, then Equation 2.44 will obey Newton’s Third Law [10].

2.5 Laplacian Approximation

The second derivative or the Laplacian approximation in SPH can be determined by

replacing f (x) in Equation 2.17 with ∇ f (x), applying the product rule and invoking

the divergence theorem and the compact support property to obtain

〈
∇2 f

〉
=

N

∑
j=1

f j
mj

ρj
∇2

i Wij (2.45)

The problem with the above expression is that the second derivative of the smooth-

ing function is very sensitive to the particle disorder, that is if the particles are not laid

out in a structured way, it can cause unpredictable behaviour due to the fact that∇2W

can have two turning points within its range of compact support. Using this equa-

tion is adequate for systems where there is no motion, but for fluid systems where the

particles can move, using this equation can cause unrealistic motion.

An alternative to using the second derivative of the kernel is to use Equation 2.30

and replace the function f with a finite difference approximation for the gradient of f .
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〈
∇2 f

〉
= 〈∇ · ∇ f 〉 =

1
ρi

N

∑
j=1

mj

([
∂ f
∂r
∇r
]

j
−
[

∂ f
∂r
∇r
]

i

)
∇Wij (2.46)

=
1
ρi

N

∑
j=1

mj

(
f ji

|rji|
rji

|rji|
−

f ji

|rji|
rij

|rij|

)
∇Wij (2.47)

=
1
ρi

N

∑
j=1

2mj

(
fij

|rij|2

)
rij∇Wij (2.48)

=
1
ρi

N

∑
j=1

2mj

(
fij

|rij|2

)
rij

∂Wij

∂r
rij

|rij|
(2.49)

〈
∇2 f

〉
=

1
ρi

N

∑
j=1

2mj
(

fi − f j
) ∂Wij

∂r
1
|rij|

(2.50)

Using the above expression for the Laplacian removes the use of the second deriva-

tive of the smoothing function, which allows for better stability [3].

2.6 Corrected Function and Gradient Approximation

Consider the following one-dimensional Taylor series expansion of the function f

around the position of particle i, xi, and evaluated at the position of particle j, xj.

f (xj) = f (xi) + f ′(xi)(xj − xi) (2.51)

f (xj)Wij = f (xi)Wij + f ′(xi)(xj − xi)Wij (2.52)∫
Ω

f (xj)WijdVj =
∫

Ω
f (xi)WijdVj +

∫
Ω

f ′(xi)(xj − xi)WijdVj (2.53)

Now, ignoring the term with the derivative, f ′(xi) in Equation 2.53 we can solve

for the function value at particle i, f (xi).

∫
Ω

f (xj)WijdVj =
∫

Ω
f (xi)WijdVj (2.54)∫

Ω f (xj)WijdVj∫
Ω WijdVj

= f (xi) (2.55)
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Replacing the integral with the summation approximation, we are left with a cor-

rected particle approximation for particle i.

f (xi) =

N

∑
j

f (xj)Wij
mj

ρj

N

∑
j

Wij
mj

ρj

(2.56)

In the SPH notation, the above equation becomes:

〈 f 〉i =

N

∑
j

mj

ρj
f jWij

N

∑
j

mj

ρj
Wij

(2.57)

Equation 2.57 is the corrected particle function approximation. The benefit of using

this function is that the denominator will always normalize the numerator when f j is

equal to 1. Also, since the smoothing function, W, appears in the numerator and the

denominator, the smoothing function does not need to be normalized (assuming that

the smoothing length, h, is the same for all particles).

Similarly, instead of multiplying the Taylor series expansion by the smoothing

function, it was multiplied by the derivative of the smoothing function and ignor-

ing second order derivatives and above, we can obtain a corrected approximation for

the gradient of the function.

f (xj) = f (xi) + f ′(xi)(xi − xj) + f ′′(xi)(xi − xj)
2 (2.58)

f (xj)
∂W
∂x

= f (xi)
∂W
∂x

+ f ′(xi)(xi − xj)
∂W
∂x

(2.59)∫
Ω

f (xj)
∂W
∂x

=
∫

Ω
f (xi)

∂W
∂x

+ f ′(xi)
∫

Ω
(xj − xi)

∂W
∂x

(2.60)

f ′(xi) =

∫
Ω f (xj)− f (xi)

∂W
∂x∫

Ω(xj − xi)
∂W
∂x

(2.61)
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Using the standard SPH notation, we are left with a corrected particle approxima-

tion for the gradient of a function.

〈 fx〉i =

N

∑
j

mj

ρj

(
fi − f j

) ∂Wi

∂x

N

∑
j

mj

ρj

(
xi − xj

) ∂Wi

∂x

(2.62)

The above equation is the corrected particle approximation for the x-derivative of

the function and particle i, fxi . The derivative of the smoothing function is taken with

respect to the position of particle i. The y and z derivatives can be obtained in a similar

fashion:

〈
fy
〉

i =

N

∑
j

mj

ρj

(
fi − f j

) ∂Wi

∂y

N

∑
j

mj

ρj

(
yi − yj

) ∂Wi

∂y

(2.63)

〈 fz〉i =

N

∑
j

mj

ρj

(
fi − f j

) ∂Wi

∂z

N

∑
j

mj

ρj

(
zi − zj

) ∂Wi

∂z

(2.64)

2.7 Summary and List of Notations

The following is list of equations derived in this chapter:

1. Difference notation for a particle property, A. Here A can be any value associated

with a specific particle such as position, velocity, density, etc.

Aij = Ai − Aj (2.65)

2. Density of particle

〈ρ〉i =
N

∑
j=1

mjW
(
ri − rj, h

)
(2.66)
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3. Particle approximation of a function at a specific particle i

〈 f 〉i =
N

∑
j=1

mj

ρj
f jWij (2.67)

4. Particle approximation of the gradient of a function at a specific particle i

〈∇ f 〉i =
N

∑
j=1

mj

ρj
f j∇iWij (2.68a)

〈∇ f 〉i =
1
ρi

N

∑
j=1

mj
(

f j − fi
)
∇iWij (2.68b)

〈∇ f 〉i = ρi

N

∑
j=1

mj

(
fi

ρ2
i
+

f j

ρ2
j

)
∇iWij (2.68c)

5. Laplacian of a function

〈
∇2 f

〉
i
=

1
ρi

N

∑
j=1

2mj
(

fi − f j
) ∂Wij

∂r
1
|rij|

(2.69)

6. Gradient of the smoothing function

∇iWij =

(
∂W(|rij|)

∂r
· 1
|rij|

)
rij (2.70)

7. Corrected particle function approximation

〈 f 〉i =

N

∑
j

mj

ρj
f jWij

N

∑
j

mj

ρj
Wij

(2.71)

8. Corrected gradient

〈 fx〉i =

N

∑
j

mj

ρj
fij

∂Wi

∂x

N

∑
j

mj

ρj
xij

∂Wi

∂x

(2.72a)
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〈
fy
〉

i =

N

∑
j

mj

ρj
fij

∂Wi

∂y

N

∑
j

mj

ρj
yij

∂Wi

∂y

(2.72b)

〈 fz〉i =

N

∑
j

mj

ρj
fij

∂Wi

∂z

N

∑
j

mj

ρj
zij

∂Wi

∂z

(2.72c)



Chapter 3

Discretization of the Navier-Stokes

Equations

The Navier-Stokes equations are a set of equations that describe the motion of fluid

material. Fluids are substances whose shape deforms under applied shear stress.

Solids, on the other hand are capable of resisting shear stress and maintaining its shape

and volume. The equations of fluid flow are a continuum formulation of Newton’s

law of conservation of momentum in which the motion of an infinitesimal volume of

mass is directed by the external forces acting on the volume.

In Eulerian form, the momentum equation has the form

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇P +∇ · τ + f, (3.1)

where v is the velocity of the fluid, P is the pressure within the fluid, τ is the deviatoric

stress tensor, and f is the sum of any external forces acting on the fluid. The term

∂v
∂t on the left side of the momentum equation represents the acceleration of a fluid

volume at a fixed location in space. This form of the momentum equation is usually

solved when grid-based methods are used. Instead of using the partial derivatives,

the material derivative can be used. The material derivative of a continuous field is

21
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D f
Dt

=

(
∂ f
∂t

+ v · ∇ f
)

. (3.2)

The material derivative represents the rate of change of the volume as it moves

with the velocity field. Using this in the momentum equation gives us the Lagrangian

form for the conservation of momentum of a fluid volume

ρ
Dv
Dt

= −∇P +∇ · τ + f. (3.3)

In SPH, since the fluid is represented by a finite number of particles that move

through space, the material derivative is a better choice to use. The momentum equa-

tion that we will be investigating is

Dv
Dt

= −1
ρ
∇P +

1
ρ
∇ · τ − σκ

ρ

n
|n|δs + g, (3.4)

where the external force has been split into two terms, the acceleration due to gravity

and the surface tension force. Here g is the gravitational acceleration, σ is the surface

tension coefficient, κ is the curvature of the fluid’s surface and n is the outward surface

normal of the fluid surface. The first term on the right side of the equation is the

acceleration due to the pressure in the fluid; the second term is the acceleration due

to viscous forces within the fluid; the third and fourth terms are the external forces of

surface tension and gravity. Equation 3.4 is simply a Newton’s Second Law equation

for the motion of the fluid. The left side of the equation is the acceleration of a fluid

mass, and the right side is the sum of all the forces acting on the fluid divided by an

inertial property, density.

Aside from the momentum equation, fluids are required to conserve mass during

their motion. If we consider a small volume of fluid, as fluid from outside the volume

flows into the volume, the density of the fluid volume should increase. Likewise, the

density should decrease as fluid flows out of the volume. This behaviour is modeled

using the continuity equation
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∂ρ

∂t
+∇ · (ρv) = 0 (3.5)

or in Lagrangian form:

Dρ

Dt
= −ρ∇ · v (3.6)

The momentum equation (Equation 3.1) together with the continuity equation

(Equation 3.5) from the generalized Navier-Stokes equation for fluid flow.

For fluids that can be compressed, an equation of state is required to close the

system and relate the pressure within the fluid to other properties of the system. An

example of an equation of state is the ideal gas equation. For most liquids, the density

changes in the fluid flow are minuscule. Such fluids are known as incompressible

fluids. Incompressible fluids are modeled so that the material derivative of its density

is zero. This enforces a divergence free condition for the velocity field of the fluid.

∇ · v = 0 (3.7)

We discretize the Navier-Stokes equations into a set of ordinary differential equa-

tions by discretizing each of the derivatives and gradients that appear in the equations

according to the SPH formulations. The pressure and the viscous forces are discretized

using Equation 2.44 and the continuity equation is discretized using Equation 2.40,

yielding:

〈
∇P

ρ

〉
i

=
N

∑
j=1

mj

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇Wij, (3.8)

〈
∇ · τ

ρ

〉
i

=
N

∑
j=1

mj

(
τi

ρ2
i
+

τj

ρ2
j

)
∇Wij, and (3.9)

〈ρ∇ · v〉i = −
N

∑
j=1

mj
(
vj − vi

)
· ∇Wij. (3.10)
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Combining these three equations with the Navier-Stokes equations results in a set

of ordinary differential equations to solve for each particle.

〈
Dv
Dt

〉
i

= −
N

∑
j=1

mj

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇Wij

+
N

∑
j=1

mj

(
τi

ρ2
i
+

τj

ρ2
j

)
∇Wij + fext (3.11)〈

Dr
Dt

〉
i

= vi (3.12)

〈
Dρ

Dt

〉
i

=
N

∑
j=1

mj
(
vi − vj

)
· ∇Wij (3.13)

The density evolution describe by the continuity equation may be omitted if the

fluid flow is to be incompressible. See Section 3.3 for incompressible fluid flow.

3.1 Modelling Stress

Viscosity is the internal friction of the fluid and is responsible for dissipating the en-

ergy within the fluid. The viscosity is represented as the divergence of the deviatoric

stress tensor,τ, in Equation 3.4.

Newtonian fluids are fluid in which the stress tensor is linearly proportional to the

rate of strain tensor, D. That is

τ = µD, (3.14)

where µ is the dynamic viscosity coefficient and the rate of strain tensor for incom-

pressible fluids is given by
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D =
1
2
∇v +

1
2
(∇v)T =


∂xu 1

2

(
∂yu + ∂xv

) 1
2 (∂zu + ∂xw)

1
2

(
∂yu + ∂xv

)
∂yv 1

2

(
∂zv + ∂yw

)
1
2 (∂zu + ∂xw) 1

2

(
∂zv + ∂yw

)
∂zw

 . (3.15)

The variables u, v and w are the Cartesian components of the velocity vector.

For incompressible Newtonian fluids, the divergence of the stress tensor simplifies

to the Laplacian of the velocity field.

∇ · τ = µ∇2v (3.16)

For non-Newtonian fluids the stress tensor is not linearly proportional to the rate

of strain tensor. The viscosity coefficient, µ can be a function of the local properties

of the fluid such as temperature, or more commonly the rate of strain. Many models

exist to model the viscosity for non-Newtonian fluids. Barnes et al. showed that the

viscosity of non-Newtonian fluids can be effectively modeled by the Cross Model [17]

[1]:

µ(γ) = µ∞ +
µ0 − µ∞

1 + Cγa , (3.17)

where µ0 and µ∞ are the dynamic viscosities at low and high shear rates and γ is the

Frobenius norm of D defined by:

γ = |D| =

√√√√ 3

∑
i=1

3

∑
j=1
|Dij|2 (3.18)

The parameters C and a that appear in Equation 3.17 describe the qualitative rate of

change of viscosity with respect to changes in the magnitude of the internal stresses

in the fluid (see Figure 3.1). The parameters essentially define the location and rate of

change of the transition between the two bounds on viscosity.
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Figure 3.1: The Cross model for non-Newtonian viscosity.

The benefit of the Cross model is that the viscosity is defined for all values of γ

and is bounded by the two extremes, µ∞ and µ0. The drawback is that there are four

parameters, µ∞, µ0, C and a, in the model that need to be determined to accurately

model the non-Newtonian fluid. Other viscosity models exist, but some models lead

to unphysical predictions when the computed viscosity vanishes or blows up at finite

stresses (e.g., see [8]).

To compute the viscous forces acting on a particle, the rate of strain tensor must

be constructed for the particle. The partial derivatives in the rate of strain tensor are

computed using the corrected gradient formula, Equations 2.72a - 2.72c. For example,

we compute ∂u
∂x by the following equation, the rest of the partial derivatives can be

computed similarly.
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〈ux〉i =

N

∑
j

mj

ρj
uij

∂Wij

∂x

N

∑
j

mj

ρj
xij

∂Wij

∂x

(3.19)

=

N

∑
j

mj

ρj
(ui − uj)

(
∂Wij

∂r
1
|rij|

)
(xi − xj)

N

∑
j

mj

ρj
(xi − xj)

(
∂Wij

∂r
1
|rij|

)
(xi − xj)

(3.20)

Once the rate of strain tensor is constructed, the viscosity coefficient for each par-

ticle is calculated using Equation 3.17 and the stress tensor is constructed by multi-

plying the viscosity coefficient with the rate of strain tensor. The viscous accelerations

can then be computed using Equation 3.9.

3.2 Modelling Surface Tension

Surface tension plays an important role in droplet formation. Surface tension at the

microscopic level is created by the cohesion of the molecules within the fluid. In the

interior region of a volume of fluid, individual molecules experience cohesive forces

from interactions with neighbouring molecules in all directions. The total of all the

cohesive forces acting on any given molecule in the interior of the fluid is zero on

average. At the fluid’s external boundary, however, there are no neighbouring fluid

molecule interactions so the cohesion of molecules results in a net force acting on the

fluid surface. If the fluid interface is curved towards the fluid, the net force due to the

cohesive forces produces a net force that points towards the fluids and is proportional

to the curvature of the fluid interface. If the interface is curved away from the fluid,

the net force is in the opposite direction. Mathematically the surface tension force is

represented as:



CHAPTER 3. DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS 28

Fs(r) = −σκ
n
|n|δs , (3.21)

where κ is the curvature of the fluid interface, σ is the surface tension coefficient, n is

the outward surface normal of the fluid interface, and δs is the Dirac Delta function

whose argument is zero on the fluid surface. The surface tension in our experiments

follows the work done by Zhang[19].

3.2.1 Identifying Surface Particles in Two-Dimensions

In actual fluid simulations, to compute the surface tension at the fluid interface,the

specific location of the fluid interface must be known. That is, it is necessary to identify

the particles of fluid that lie in the interior of the fluid volume and the particles that lie

at the interface of the fluid and the outside region. We identify surface particles using

a method developed by Dilts[4].

We illustrate the computational method of Dilts by first considering a fluid in two

dimensions. Consider a particle, i, surrounded by a number of other particles, j, in

close proximity. An imaginary circle with a radius equal to the initial particle spacing

is created at the location of each particle. If the circle of particle i is fully covered by the

circles of its neighbour particles then particle i is tagged as an interior fluid particle. If

particle i’s circle is not fully covered, then particle i is tagged as a surface particle.

Let ri and rj be the centers of circles i and j, and Ri and Rj be the radii of each circle.

• If d =
∣∣rj − ri

∣∣ ≥ Ri + Rj, then the two circles intersect at one point or do not

intersect at all.

• If d =
∣∣rj − ri

∣∣ < Ri + Rj, then the two circles intersect at two points.

If the two circles intersect at two points, then the location of the two points of

intersection is given by the following steps ( see Figure 3.2 for variable references ):
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1.

a =
R2

i − R2
j + d2

2d
(3.22)

2.

h =
√

R2
i − a2 (3.23)

3.

rc = ri +
a
d
(
rj − ri

)
(3.24)

4.

x1 = xc +
h
d
(
yj − yi

)
(3.25)

y1 = yc −
h
d
(
xj − xi

)
(3.26)

x2 = xc −
h
d
(
yj − yi

)
(3.27)

y2 = yc +
h
d
(
xj − xi

)
(3.28)

Given two points r1 = (x1, y1) and r2 = (x2, y2) on circle i, the angle that each point

subtends from the positive x-axis is:

α1 = atan2(y1 − yi, x1 − xi) (3.29)

α2 = atan2(y2 − yi, x2 − xi) (3.30)

We must make sure that each of these angles are in the range [0, 2π], we do this by the

following formula:

α =


α, α > 0

α + 2π, α < 0
(3.31)

After both angles are readjusted to lie between [0, 2π], we must determine whether

circle j covers the arc [α1, α2], or [α2, 2π]
⋃
[0, α1] (assuming that α1 < α2). To determine
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Figure 3.2: The intersection of two circles.
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this, the angle the distance vector d = rj− ri makes with the positive x-axis is checked

to see in which range the angle falls in. The angle the distance vector makes with the

postive x-axis is

d = rj − ri (3.32)

αc =


atan2(dy, dx), atan2(dy, dx) > 0

atan2(dy, dx) + 2π, atan2(dy, dx) < 0
(3.33)

The interval, Ij, that circle j covers is then:

Ij =


[α1, α2], αc ∈ [α1, α2]

[α2, 2π]
⋃
[0, α1], Otherwise

(3.34)

The union of all such intervals of all neighbouring circles of particle i determines

whether particle i is a surface particle or an interior fluid particle. If equation 3.35 is

satisfied, then particle i is an interior fluid particle. If it is not satisfied, then particle i

is a surface particle.

N⋃
j=1

Ij = [0, 2π] (3.35)

3.2.2 Calculating Surface Tension in Two Dimensions

Once all the surface particles have been found, a local reconstruction of the fluid sur-

face can be performed to calculate the curvature and surface normal of the fluid inter-

face. Consider for the moment a surface particle, i, surrounded by its neighbouring

particles (interior and surface particles), j. A rotated coordinate system is constructed

whose y-axis passes through the center of mass of particle i’s support domain. We

find the direction of the coordinate system by
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Figure 3.3: Arcs that each intersection point makes with the positive x-axis.
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ŷ = ri −
∑n

j rj

n
(3.36)

x̂ =
[
−ŷy, ŷx

]
(3.37)

where n is the number of particles within particle i’s support domain. The rotated

coordinate axes should be normalized:

x̂← x̂
|x̂| (3.38)

ŷ← ŷ
|ŷ| (3.39)

After the rotated coordinate system is constructed, we project the position vectors

of neighbouring surface particles, k, of particle i onto the rotated coordinate system:

xj = (rk − ri) · x̂ (3.40)

yj = (rk − ri) · ŷ (3.41)

The set of new coordinates of all surface particles near particle i, including particle

i itself whose coordinates in the rotated system will be (0, 0), are used to construct a

Vandermonde system for a quadratic curve. For n surface particles the Vandermonde

system looks like



0 0 1

x2
1 x1 1

x2
2 x2 1
...

...
...

x2
n xn 1




a

b

c

 =



0

y1

y2

...

yn


(3.42)

This system is an overdetermined system and is in the form

Ac = b, (3.43)
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The coefficient vector cT = [a, b, c] then produces the local parabola at particle i in the

rotated coordinate system and is of the form

y = ax2 + bx + c (3.44)

The overdetermined system will unlikely have any solutions, so the best approximate

solution must be solved using the normal equations, that is we solve the following

equation instead:

(
ATA

)
c = ATb (3.45)

The curvature of the fluid interface is found by calculating the curvature of the

above parabola at x = 0. The general equation for the curvature of a function is

κ =
y′′

(1 + y′)3/2 (3.46)

which, for x = 0 simplifies to

κ =
2a

(1 + b)3/2 . (3.47)

The direction of the surface normal is then given by

n̂ =
[
y′(0),−1

]
= [b,−1] (3.48)

n̂ ← n̂
|n̂| (3.49)

The normal vector must then be normalized as given in equation 3.49. This sur-

face normal vector is in the rotated system and must be rotated back into the original

coordinate system by

n = n̂xx̂ + n̂yŷ (3.50)
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Equations 3.50 and 3.47 give the surface normal and curvature of the fluid inter-

face for a single surface particle. Once the surface normals and curvature for all sur-

face particles have been found, the surface tension force at each particle can then be

calculated by

fs = −σn̂iκi (3.51)

3.3 Modelling Pressure

The pressure of a gaseous fluid is handled differently than a liquid fluid. Gases are

a compressible fluid which means its density can change depending on certain con-

ditions. For gases, the Ideal Gas Law governs the pressure inside a gas volume. The

Ideal Gas Law is usually written as:

PV = nkbT, (3.52)

where V is the volume of the gas, n is the number of particles in the gas, kb is Boltz-

mann’s Constant and T is the temperature of the gas. The Ideal Gas Law states that

the pressure of the fluid is proportional to the number density of the gas, n
V . If a gas is

to be modeled with SPH, the pressure of the fluid is determined using the following

equation of state that is linearly proportional to the density:

Pi = Cρi, (3.53)

where C is a constant that is usually proportional to the square of the speed of sound

in the gas. The density is found using the summation density

〈ρ〉i =
N

∑
j=1

mjWij (3.54)
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From the density, the pressure is calculated using Equation 3.53 and the pressure

gradient in the Navier-Stokes equation is computed using Equation 3.8.

Liquids, on the other hand, do not compress easily and are considered incom-

pressible for practical purposes. There are two ways to handle the incompressibility

of fluids in SPH. One method is to use a stiff equation of state that relates the pressure

of the fluid to the density. The equation of state that is usually used is Tate’s equation

and has the form

P(ρ) = c2
s

((
ρ

ρ0

)γ

− 1
)

. (3.55)

Here ρ0 is the rest density of the fluid, cs is the speed of sound in the fluid and γ is

a constant usually taken to be 7 [13] [2]. If Tate’s equation is used as the equation of

state, then the density of the fluid particles must be time-stepped along with their po-

sition and velocity using Equations 3.11-3.13. The density is then used to calculate the

pressure of each particle using the equation of state, Equation 3.55. The problem with

this method is that to simulate incompressibility, the speed of sound must be fairly

large. The speed of sound must be at least 10 times larger than the maximum velocity

that is expected in the simulation. This ensures that the deviation in the density of the

fluid is only at 1% of the rest density[13]. Using this stiff equation of state requires

that the step-size be very small.

The other option is to enforce strict incompressibility by constraining the velocity

field to be divergence free,

∇ · v = 0. (3.56)

In fixed grid methods, enforcing the divergence free condition for the velocity field

is performed by using the pressure-correction method. The SPH equivalent of the

pressure correction method is outlined as follows. Starting from some initial time-

step, t; the velocity, vi and positions, ri, of the particles are evolved to an intermediate
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state using only the viscous and external forces. The pressure force is neglected in this

step:

vi
∗ = vi(t) + ∆t

(〈
∇ · τ

ρ

〉
i
+ fsi + g

)
(3.57)

ri
∗ = ri(t) + ∆tvi

∗ (3.58)

At this intermediate time-step, the divergence free condition, equation 3.56, is not

satisfied. The pressure at this intermediate time-step is what forces the next time step

to be divergence free.

vi (t + ∆t) = vi
∗ − ∆t

(
∇P

ρ

)
(3.59)

By taking the divergence of both sides of the above equation and forcing the diver-

gence of the next time step to be zero, we get the following Pressure-Poisson Equation

that must be solved:

∇ ·
(
∇P

ρ

)
=
∇ · v∗

∆t
(3.60)

The boundary conditions for the pressure are usually homogeneous Dirichlet bound-

ary conditions on fluid-air interfaces and homogeneous Neumann boundary condi-

tions on fluid-solid surfaces.

In the SPH formulation, Equation 3.60 is discretized according to the SPH Lapla-

cian, Equation 2.69. A slight modification is done to the equation to keep resulting

system of equations symmetric. The modification is to replace any occurrence of par-

ticle density with the average density between particle i and j [17].

∇ ·
(
∇P

ρ

)
i
=

N

∑
j=1

8mj

(ρi + ρj)2

(
Pi − Pj

) ∂Wij

∂r
1
|rij|

(3.61)

The divergence of the intermediate velocity field is obtained using equation 2.68c.
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∇ · v∗ = 1
ρi

N

∑
j=1

mj

(
v∗i − v∗j

)
· ∇Wij (3.62)

Once pressure is solved, the position and the velocities of the particles are time-

stepped into their new position using the pressure gradient.

vi(t + ∆t) = vi
∗ − ∆t

N

∑
j

mj

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇Wij (3.63)

ri(t + ∆t) = ri
∗ + ∆tvi(t + ∆t) (3.64)

3.3.1 Solving the Pressure-Poisson Equation

The SPH Pressure-Poisson Equation, equation 3.61, once discretized for each particle

has the form:

Pi

N

∑
j=1

(
8mj

(ρi + ρj)2

∂Wij

∂r
1
rij

)
−

N

∑
j=1

(
Pj

8mj

(ρi + ρj)2

∂Wij

∂r
1
rij

)
(3.65)

=
1

∆tρi

N

∑
j=1

mj

(
v∗ij
)
· ∇Wij (3.66)

(3.67)

The resulting system of equations looks as follows:



∑N
j=1 A1j −A12 −A13 · · · −A1N

−A21 ∑N
j=1 A2j −A23 · · · −A2N

−A31 −A32 ∑N
j=1 A3j · · · −A3N

...
...

... . . . ...

−AN1 −AN2 −AN3 · · · ∑N
j=1 ANN





P1

P2

P3

...

PN


=



b1

b2

b3

...

bN


, (3.68)

where
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Aij =
8mj

(ρi + ρj)2

∂Wij

∂r
1
rij

(3.69)

bi =
1

∆tρi

N

∑
j=1

mj

(
v∗i − v∗j

)
· ∇Wij (3.70)

The diagonal element in each row of the coefficient matrix is simply the negative

of the sum of all the other elements in that row. Since most of the particles are farther

than the support radius, h, the coefficient matrix ends up being sparse. The coefficient

matrix is positive-definite as well as symmetric, that is Aij = Aji which can be solved

using the Conjugate Gradient method [16].



Chapter 4

Numerical Results

4.1 Implementation

4.1.1 Nearest Neighbours Search

The summations in all the SPH equations are summations over all particles in the sys-

tem. The naive approach to computing the summations is to perform the summation

over all indices. Since the kernel functions have compact support, any particles that lie

farther than a distance of h will have a value of zero. It is unnecessary to compute the

majority of the terms in the summation since most of the terms will equal zero. There

are two techniques that are commonly used to reduce the terms in the summation.

Both methods involve searching for nearest neighbour pairs that are within a certain

Euclidean distance. The two techniques are spatial hashing and binary tree searches.

Spatial hashing involves subdividing the spatial domain into square or cubic cells

with side length equal to 2h. Each cell contains an array of all the particles whose po-

sitions lie within that cell. When the SPH summations are performed for a particular

particle, i, we determine what spatial cell that particle is in, and extract all the parti-

cles that are in that cell, plus the 8 neighbouring cells (26 cells for 3 dimensions). The

best implementations of storing and retrieving nearest neighbours can run in O(kN)

40
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time where k is usually on the order of the number of particles per cell, and N is the

number of particles[10].

The binary tree search involves using a k-dimensional tree structure. The k-d tree

is a binary tree in which every node is a k-dimensional point. In our case, it is a 2-

dimensional point. Each node represents a hyperplane that splits the domain into

two parts. When new points are added to the tree, these new points are added to

one of the two new subdivisions and the subdivision that the particle was added to is

subdivided once more. The insertion and finding of nearest neighbours usually runs

in O(N log(N)) time [7].

In our implementation we chose to implement the k-d tree to increase the speed

of the computations. There are an abundant amount of k-d tree codes freely available

on the Internet which made finding and implementing one of these library easy to

accomplish. Although spatial hashing can be faster than tree searches, we chose to use

the k-d tree structure because of its ease of use and implementation. At the beginning

of each iteration, the k-d tree is destroyed and the particles reinserted back into the

tree. After the particles are inserted into the tree, the nearest neighbours of all particles

are found.

The speed of the summations was further increased by multi-threading the com-

putations. Each thread was assigned a number of particles that it was responsible for.

When the summations were required, each thread computed the summations for its

assigned particles. This allowed the speed of the computation to scale linearly with

the number of processing cores available on the machine performing the computation.

Solving of the Pressure Poisson Equation was performed using the Conjugate Gra-

dient Method. We used a freely available linear algebra library called Eigen to solve

the system of equations. To increase the speed further, the matrix-vector product algo-

rithm was also multi-threaded. Parallelization of the matrix-vector product algorithm

was achieved by dividing the matrix N × N matrix into p smaller matrices, each of
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which is of size N
p × N, where p is the number of processors available on a particu-

lar machine. For example, a machine with 3 processors would perform the following

computation

Ax =


B1

B2

B3

 x (4.1)

=


B1x

B2x

B3x

 (4.2)

= y (4.3)

where B1, B2 and B3 are blocks that make up matrix A. Each of the matrix-vector

products in Equation 4.2 are performed on separate threads and the resulting vectors

are combined to produce vector y. Eigen was also used to solve the normal equations

required for finding the surface tension.

4.1.2 Coverage of a Circle

In Section 3.2 we discussed the method to find surface particles from a point cloud.

A circle is covered if the union of all the intervals of coverage is equal to the interval

[0, 2π]. That is:

N⋃
j=1

Ij = [0, 2π] (4.4)

Haque and Dilts provided a method to determine the coverage of a circle using

dynamic linked lists [6]. The implemented data structure contains a linked-list of two

dimensional points each of which represent a particular closed interval. Rather than

determining the union of all the intervals, we start with the interval of [0, 2π] and
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subtract each of the individual intervals of coverage, Ij until the size of the original

interval is zero. Each time an interval is subtracted from the list, the interval nodes in

the list are split into two nodes if it fully intersects the interval to be subtracted; re-

moved if the node is contained within the subtracted interval; or resized if it partially

intersects the subtracted interval. For example, consider the following set operation:

S = [0, 10]− [4, 6]− [2, 4]− [7, 8]. The evolution of the linked list structure is shown

in Table 4.1.

Set Operation Resulting Linked List

S := [0, 10] [0, 10]→

S := S− [5, 6] [0, 4]→ [6, 10]→

S := S− [2, 4] [0, 2]→ [6, 10]→

S := S− [7, 8] [0, 2]→ [6, 7]→ [9, 10]→

Table 4.1: Sixth-order Guassian-like kernel.

We implemented Haque’s and Dilts’ method in C++ by creating a class that inherits

from the linked list data structure provided by the Standard Template Library.

4.2 Convergence Analysis

In section 2.1.1 it was shown that the interpolation of a function using SPH yields

O(h2) accuracy. This section tests this claim. In finite difference schemes, the accuracy

of the approximation is usually quantified or measured in relation to ∆x, the distance

between adjacent grid points. As the distance ∆x between adjacent grid nodes de-

creases, the error of the associated solution computed is asymptotically proportional

to some (positive) power of ∆x. With SPH, separation distance is not the only fac-

tor that affects the accuracy of the approximation. The smoothing length, h, plays an
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important role in both the accuracy and the stability of the system that it is trying to

approximate.

Consider the function

f (x) = sin(exp(3x)), x ∈ [0, 1] (4.5)

This function, and its derivative are oscillatory functions that have low frequency

near the left endpoint of the interval and a higher frequency and amplitude (for the

derivative) near the right end of the interval (see the plots of f and f ′ as shown in

Figure 4.1). This function was chosen because it contains both low and high frequency

oscillations so that we could investigate the accuracy of the interpolation scheme in

both regimes.

To approximate this function, N particles were uniformly distributed in the inter-

val [0, 1]. The function and its gradient are then approximated using the corrected

particle function approximation, Equation 2.71, and the corrected gradient approxi-

mation, Equation 2.72a. These computations are repeated while varying N (the num-

ber of particles) and h (the smoothing length) to examine the accuracy of the corre-

sponding approximations. We compare the error in the approximation to the average

particle spacing ∆x = N
L , where is the length of the interval, in our case L = 1, and the

number of nearest neighbours, k, within the smoothing length. That is, the size of the

kernel encompasses, k, particles before its value reaches zero.

We use the following formulas to determine the error in the approximations

Function Error =

[
N

∑
i=1
| f (xi)− 〈 f 〉i|

2 ∆x

]1/2

(4.6)

Gradient Error =

[
N

∑
i=1

∣∣ f ′(xi)− 〈 fx〉i
∣∣2 ∆x

]1/2

, (4.7)

where f (xi) and f ′(xi) are the actual function and it’s derivative evaluated at the lo-
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Figure 4.1: Function, f (x) = sin(exp(3x)), and derivative, f ′(x) =

3 cos(exp(3x)) exp(3x), to be approximated.

cation of particle i, and 〈 f 〉i and 〈 fx〉i is the function and its gradient calculated using

Equation 2.71 and 2.72a and using the sixth order polynomial kernel, Equation 2.18.

In the two error plots, Figure 4.2 and 4.3, the total error decreases as the number

of particles increase in the domain. This is equivalent to the decreasing the smoothing

length, h, for constant number of nearest neighbours. The slope of each line in figure

4.2 is ≈ −2 which shows the second order accuracy derived in Equation 2.11. The

gradient convergence, figure 4.3, on the other hand shows an order of accuracy close

to O(h). The low order of accuracy can lead to large errors in numerical simulations.
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Figure 4.2: Error plot for approximating the function f (x) using the corrected particle

function approximation for different number of particles as a function of smoothing

length (represented as the number of particles within the smoothing length).
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Figure 4.3: Error plot for approximating the derivative of the function f (x) using

the corrected particle gradient approximation with various number of particles and

smoothing length.
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4.2.1 Smoothing Length

In Figures 4.2 and 4.3, the total error is smallest when there are only two particles in

the smoothing length. A question arises as to why ever have more than two particles

within the smoothing length if two particles yields the smallest error? In the previous

case, each particle was given the function value fi = f (xi), but consider for the mo-

ment, that each particle is then given a small random pertubation of 1% of the function

value.

Calculating the function value and the gradient using only two particles in the

smoothing length, as was done previously shows that even though the error in the

function value is very small, the error in the gradient is very large, especially in areas

where the gradient does not change very much. This is not surprising considering

numerical differentiation is always sensitive to noise.

Figures 4.4a and 4.4b show the particle function and gradient value for a smooth-

ing scale of 2 neighbours, and for 16 neighbours, with a total number of 500 particles.

As can be seen, near the left endpoint, where the function does not change very much,

the computed gradient is very scattered. Increasing the size of the smoothing length

to include more particles within each summation causes the function and gradient

values to be smoothed over a large range, this reduces the scattering in areas where

the gradient does not change very fast. On the right side of the interval, the gradi-

ent changes very quickly over a small range. If the smoothing length is too large,

the gradient is not represented very well. As can be seen in figure 4.4b, the particle

approximation of the gradient on the right side of the graph is not well represented

because its values are smoothed out over a range that is comparable to the range in

which the gradient changes.

For this particular function, there is a critical value for the number of particles that

should be in the smoothing length, but this is not universal, different functions will

have a minimum at different locations.



CHAPTER 4. NUMERICAL RESULTS 49

(a) 2 particles in smoothing length

(b) 16 particles in smoothing length

Figure 4.4: Particle approximation of function f, with random noise.



CHAPTER 4. NUMERICAL RESULTS 50

Figure 4.5: Error plot for approximating the derivative of the function f (x) using

the corrected particle gradient approximation with varoius number of particles and

smoothing length.
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Unlike the finite difference methods where the resolution of the simulation is de-

termined by the grid spacing, the SPH approximation is determined by the size of

the smoothing length, h. Even though the distance between particles, ∆x, can be

much smaller than the smoothing length, h, the system will not converge according to

∆x. The smoothing length is responsible for smoothing out high frequency noise that

could possibly develop in the system. By smoothing the values out over a distance of

h, the resolution of the simulation can only be accurate up to an order of h2, as was

found in equation 2.11

4.3 Two-Dimensional Tests

To test some of the fluid simulation capabilities of SPH, we performed three two-

dimensional experiments to test the various aspects of SPH. We tested the surface

pressure condition for the fluid surface when solving the Pressure-Poisson Equation

(Section 4.3.1), an imposed artificial viscosity for system stability (Section 4.3.2) and

the type of kernel used (Section 4.3.3). The experiments involved looking at a square

volume of fluid under the effect of surface tension. Surface tension will act on the

square droplet and deform it into a circle. We found that the best results occurred if

the surface particle pressure of the fluid was non-zero, artificial viscosity was turned

on and the third-order polynomial kernel was used instead of the sixth-order poly-

nomial. Table 4.2 shows the components that were varied for each experiment along

with components that resulted in a stable simulation. The stable simulation outcome

is shown in Figure 4.6. The parameters that were left constant in all three experiments

are summarized in Table 4.3. The experiments were performed and compared with

the stable case that produced the best results.

Unlike the traditional SPH method for compressible fluids where the mass of the

fluid particle is fixed and the density is determined using Equation 2.66; in our tests
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the density of the particles is fixed, and the mass of each particle is determined by tak-

ing the total mass of the fluid (density × volume) and dividing it by the total number

of particles in the system.

Surface Pressure Artificial Viscosity Kernel

Stable Non-Zero Yes W3

Experiment 1 Zero Yes W3

Experiment 2 Non-Zero No W3

Experiment 3 Non-Zero Yes W6

Table 4.2: Components of the SPH simulation that were varied in each experiment

4.3.1 Experiment 1: Surface Particle Pressure

When solving the Pressure-Poisson Equation, homogeneous Dirichlet boundary con-

ditions are required on the fluid interface. In SPH, the boundary conditions are that

the surface particles’ pressure should be zero, or at constant atmospheric pressure,

similar to the condition for fixed-grid methods. If this is done, all surface particles

will have the same pressure. If any two surface particles come too close to each other

due to the morphing of the fluid surface, there will be no pressure gradient to force

the particles apart, this will cause clumping of particles. The clumping of the parti-

cles along with the surface tension algorithm will produce unphysical results and can

cause the system to diverge. To solve this issue, the fluid interface is assumed to be

one particle spacing away from the surface particles, see Figure 4.7, rather than on

the surface particles. Surface particle, i and interior particle j are mirrored across the

imaginary fluid interface and their pressure is negated. The negation of the pressure

is to insure that the pressure is zero at the fluid interface.

A slight modification is required to be made to the SPH Laplacian. If particle i is
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Figure 4.6: Evolution of a square droplet using non-zero surface pressure, artificial

viscosity and third-order polynomial kernel.
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Parameter Value

Number of Particles N 2600

Density ρi 1000 kg
m3

Viscosity [µ0, µ∞] [0.002, 0.004] Pa · s
Cross Model Parameters

[C, a]

[2, 2]

Surface Tension σ 7.2× 10−3 N
m

Particle Spacing 0.0002 m

Smoothing Length h 0.0007 m

Side Length 0.01 m

Table 4.3: SPH parameters used in simulations.

Figure 4.7: Real and mirrored (*) particles across the imaginary fluid interface.

a surface particle and particle j is an interior fluid particle, then the Laplacian of the

pressure for particle i is written as

∇ ·
(
∇P

ρ

)
i
=

N

∑
j=1

8mj

(ρi + ρj)2

(
Pi − Pj

)
F
(∣∣rij

∣∣)+ N

∑
j=1

8mj

(ρi + ρj)2

(
Pi + Pj

)
F
(∣∣rij

∣∣+ ∆x
)

,

(4.8)

where
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F(r) =
∂W
∂r

1
r

, (4.9)

otherwise, Equation 3.61 is used. When computing the gradient, using Equation 3.8, at

the surface particles, the mirrored particles must also be included into the summation.

Figure 4.8 show the evolution of a droplet without particle surface pressure ( Figure

4.6 shows the evolution with surface pressure). As can be seen, when the surface

deforms under the affect of surface tension, particles are forced together. Since there is

no pressure gradient between neighbouring surface particles, the surface tends to stay

deformed and cause unphysical behaviour on the surface of the fluid. If Equation 4.8

is used, the surface particles of the fluid can be forced apart by the pressure gradient.

This allows for much better physical results and the surface tension algorithm does

not produce unrealistic results due to particles being too close to each other.

4.3.2 Experiment 2: Artificial Viscosity

It was found that using an artificial equation of state to approximate incompressibility

was very unstable unless an artificial viscosity term was included [13]. The artificial

viscosity term introduced by Monaghan is usually coupled with the pressure gradient

term:

〈
∇P

ρ

〉
i
= −

N

∑
j=1

mj

(
Pi

ρ2
i
+

Pj

ρ2
j
+ Πij

)
∇Wij (4.10)

where

Πij =


−αcsφij+βφ2

ij
ρij

, φij < 0

0 , φij > 0
(4.11)

φij =
hvij · rij

|r|2ij + 0.01h2
(4.12)
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Figure 4.8: Evolution of a square droplet with zero surface pressure boundary condi-

tion.
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The artificial viscosity has the effect of slowing particles down as they move to-

wards each other. The term is symmetric in the indices i and j so the artificial viscosity

conserves linear and angular momentum and is also zero for rigid body rotation. The

constants cs, α and β are the speed of sound and the linear and quadratic viscosity

coefficients. The linear term is the most important for stability while the quadratic

term is usually used in scenarios where fluid particles are approaching each other at

high speeds such as supersonic flows. In most of the SPH literature, and in our tests,

β was set to zero. The linear term, α is usually set according to the problem that is

trying to be solved. The value of α is set to be the smallest value that keeps the system

stable. The only other place the speed of sound appears is in the artificial equation

of state (Equation 3.55). Since we are using the pressure correction method and as-

suming incompressibility we do not have an actual sound speed in the fluid, so the

two constants α and cs can be combined into one constant. We chose to keep them as

separate constants to be consistent with the original formulation by Monaghan. Since

h appears in the numerator of the artificial viscosity term, the effect of increasing the

resolution of the simulation (increasing the number of particles and decreasing the

smoothing length, h) has the effect of lowering the contribution of the artificial vis-

cosity. In the limit as h → 0 the artificial viscosity vanishes. Monaghan also showed

that the extra viscosity that is added due to this term is approximately equal to αhcs.

Many authors that work with the pressure correction method for SPH do not include

the artificial viscosity term, but it was found that in our cases, the artificial viscosity

was necessary to keep the system stable. In our tests, we take α = 10−6, β = 0 and

cs = 120.

Equation 4.13 is usually employed when an artificial equation of state is used to de-

termine the pressure. If the pressure is determined using the Pressure Poisson Equa-

tion, then the artificial viscosity term in Equation 4.13 will prevent the pressure gra-

dient from properly moving the particles into a divergence free velocity field. This
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Figure 4.9: Simulation of the square droplet without artificial viscosity.

will eventually cause particles to move closer and closer together and therefore will

not conserve volume. Instead of coupling the artificial viscosity with the pressure

gradient as is normally done, we couple it with the divergence of the stress tensor.

〈
∇ · τ

ρ

〉
i
=

N

∑
j=1

mj

(
τi

ρ2
i
+

τj

ρ2
j

)
· ∇Wij +

N

∑
j=1

mjΠij∇Wij (4.13)

Figure 4.9 shows a square droplet without artificial viscosity. The simulation be-

came unstable very quickly and diverged within 0.1 seconds of simulated time.

4.3.3 Experiment 3: Third-Order Polynomial Kernel for Pressure

Much of the literature uses a Gaussian-like kernel for most of the summations, and

uses the third order polynomial (spikey kernel) for the pressure. The reason for this

is the derivative of the Gaussian-like kernels ( Equation 2.18 ) go to zero at r = 0.

The third order polynomial on the other hand goes to infinity. This is crucial because

the pressure gradient is responsible for keeping particles apart. If the derivative of
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the kernel goes to zero as the distance between particles decrease, then the pressure

gradient will not be able to keep particles from approaching each other. This will

cause particles to bunch together. Since the third order polynomial goes to infinity as

particles approach each other, there will always be a greater and greater force keep-

ing particles apart as they approach each other. Although one must be careful in the

coding to make sure that during the summation in calculating the pressure gradient,

Equation 3.8 does not include the index j = i. If this index is included then the dis-

tance between the particle and itself is zero making the gradient of the kernel singular.

It is also important to use the third order polynomial kernel in the computation for the

artificial viscosity for the same reason that the force keeping the particles apart should

increase without bounds as two particles approach each other. In much of the litera-

ture, when the pressure correction method was employed to enforce incompressibility,

the third order polynomial kernel is not used, rather a Gaussian-like kernel was used

for all summations. In our tests, it was found that the third order polynomial should

be used in constructing the Pressure-Poisson coefficient matrix as well as to compute

the pressure gradient, Equation 4.13.

Figure 4.10 shows the evolution of the square droplet using the 6th order Gaussian-

like polynomial kernel (Equation 2.18) instead of the cubic polynomial (Equation 2.19).

As can be seen in the figure, the particles start to bunch together due to the fact that

the gradient of the kernel goes to zero as the distance between particles decreases.

4.4 Convergence Rate of Conjugate Gradient Method for

Solving the Pressure-Poisson Equation

In the Pressure Poisson Equation given by Equation 3.61 the derivative of the smooth-

ing function appears on both sides of the equation. Since the derivative appears on

both sides, so does the scalar multiplier that makes the integral of the kernel equal to
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one (table 2.1). Since the coefficient is the same for all particles, it can be removed from

the system of equations which corresponds to a diagonal preconditioning. Aside from

removing the scalar coefficient from the kernel, it was found that writing the kernel in

the following way also increased the convergence rate of the algorithm.

W∗3 (r) = (h− r)3 (4.14)

∂W∗3
∂r

1
r

= −3
(h− r)2

r
(4.15)

Using Equation 4.14 for the kernel (note the scalar coefficient was removed) dras-

tically increased the convergence rate of the conjugate gradient algorithm. The con-

vergence rate of the conjugate gradient algorithm increased to the point where it only

required one iteration to converge to a solution with a residual norm of 10−10, rather

than upwards of 30 iterations if Equation 2.19 was used. The conjugate gradient al-

gorithm requires an initial guess for the solution to the system of equations. By using

the previous iteration’s values for pressure as the initial guess and knowing that the

pressure shouldn’t change very much between iterations if the flow is fairly smooth a

convergence within one iteration is justified.
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Figure 4.10: Evolution of a square droplet using a Gaussian-like kernel.



Chapter 5

Discussion and Conclusion

The SPH implementation in this thesis was done in two dimensions for simplicity in

determining the capabilities of SPH. An extension to three dimensions is fairly non-

trivial when computing the SPH summations. The surface tension algorithm, in three

dimensions, increases significantly in mathematical and computational complexity.

Determining surface particles in three-dimensions is significantly more involved than

in two-dimensions. Haque and Dilts provide a three-dimensional algorithm to find

surface particles as well [6]. This method involves looking at intersections of spheres

rather than circles. Consider a particle, i, and neighbouring particles j. When the two

spheres of these particles intersect, they produce a circle of intersection. The circle of

intersection lies on the surface of sphere i. All circles of intersections are determined

by the intersection of nearby spheres and each of these circles will lie on particle i. The

circles of intersections that now lie on sphere i are checked with every other circle to

determine their coverage similar to the method for two-dimensions. If every circle on

sphere i is fully covered, then particle i is an interior particle, otherwise it is a surface

particle. The circles that lie on the surface of the sphere do not lie on the same plane,

so a the normal direction of the circle must also be taken into account to determine the

coverage of the circles. Haque and Dilts have provided a mathematical formulation
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for determining the coverage of a circle in three dimensions. Once the surface particles

have been found, the surface reconstruction is performed in a similar fashion except

using the following basis functions: 1, x, y, xy, x2, y2.

SPH first originated in the astrophysical community to simulate the gas dynamics

in galaxies. The method is more suited for applications in that area rather than in

the liquid domain. The appeal to use SPH in astrophysics is due to the fact that SPH

works better when simulating compressible fluids, since a non-stiff equation of state

is defined and the a Pressure-Poisson equation does not need to be solved. Also, due

to the fact that galaxy simulations usually employ open domains, this eliminates the

need for strict boundary conditions.

Unfortunately there are many aspects of SPH that does not make it a good choice of

technique to use for simulating droplet impacts. First, the surface tension algorithm,

although can detect surface particles quite sufficiently, has a difficult time conserving

momentum. There is no method in place to guarantee that the total flux of the the

surface tension force around the fluid surface is zero. If this surface flux is non-zero, it

will cause extra energy to be inputted into the system and the droplet will eventually

start to accelerate away from its true position. In our tests, momentum was conserved

for a square droplet deforming into a circle, but was not conserved for an oscillating

ellipse. One method that could possibly be used to ensure that the surface flux is zero

is to divide the total sum of the forces by the number of particles with surface tension

and then subtract that quantity from all the surface particles. This will ensure that

the sum is always zero. This was tested but did not produce expected results. Figure

5.1 shows the evolution of an ellipse using the previously stated method. As can be

seen in the 4th frame, the left side of the ellipse is not symmetric with the right side of

the ellipse. Deeper investigation would need to be conducted to determine a way to

conserve momentum with external surface tension.

Solving of the Pressure-Poisson equation is very time consuming, even with the
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Figure 5.1: Evolution of an elliptical droplet with average surface tension flux re-

moved.
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fast convergence rate of the conjugate gradient algorithm. Almost 60% of the time

required to solve the Pressure-Poisson equation goes towards the construction of the

matrix. Since the particles are not static, the coefficient matrix changes in each time

step so it must be reconstructed during each iteration. This cannot be avoided un-

less one uses a fixed grid method. This drastically increases the computation time

compared to fixed grid methods.

The second derivative approximation is not very accurate, even when using the fi-

nite difference approximation combined with the SPH first derivative, Equation 2.69.

Most of the error occurs on the edges of the fluid due to there not being as many

particles within the support domain of the kernel. For incompressible fluids, the pres-

sure force is entirely responsible for the fluid flow to stay divergence free. Since the

Pressure-Poisson Equation is constructed using the Laplacian, this can lead to unpre-

dictable behaviour due to this error.

Although Smoothed Particle Hydrodynamics has its advantages and disadvan-

tages, the advantages do not fall in favour with the models that need to be solved for

non-Newtonian droplet impact. The reasons for this as outlined above are the dif-

ficulty in solving the Pressure-Poisson equation on the surfaces as well as on solid

boundaries, the difficulty in conserving momentum with the surface tension and the

speed of the computation. The time required to run the simulations presented in this

thesis took on the order of a few hours. By extended this method to three dimensions,

the computation time would increases significantly. The best solution to solving this

problem might be to use an alternative method such as finite volume or finite element

methods.
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